Gromov hyperbolicity of periodic planar graphs

被引:4
作者
Canton, Alicia [1 ]
Granados, Ana [2 ]
Pestana, Domingo [3 ]
Manuel Rodriguez, Jose [3 ]
机构
[1] Univ Politecn Madrid, ETSIN, Dept Ciencias Aplicadas Ingn Naval, E-28040 Madrid, Spain
[2] St Louis Univ, Div Math, Madrid 28003, Spain
[3] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
关键词
Planar graphs; periodic graphs; Gromov hyperbolicity; infinite graphs; geodesics; SPACES;
D O I
10.1007/s10114-013-2370-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. The main result in this paper is a very simple characterization of the hyperbolicity of a large class of periodic planar graphs.
引用
收藏
页码:79 / 90
页数:12
相关论文
共 26 条
[1]  
Alonso J., 1992, Group Theory from a Geometrical Viewpoint
[2]   Computing the hyperbolicity constant [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) :4592-4595
[3]   Hyperbolicity and complement of graphs [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. ;
Touris, Eva .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1882-1887
[4]  
Bowditch B. H., 1990, NOTES GROMOVS HYPERB, P64
[5]  
Brinkmann G., 2001, Annals of Combinatorics, V5, P61, DOI [DOI 10.1007/S00026, 10.1007/s00026-001-8007-7, DOI 10.1007/S00026-001-8007-7]
[6]  
Carballosa W, 2012, ELECTRON J COMB, V19
[7]  
Carballosa W, 2011, ELECTRON J COMB, V18
[8]   Graph homotopy and Graham homotopy [J].
Chen, BF ;
Yau, ST ;
Yeh, YN .
DISCRETE MATHEMATICS, 2001, 241 (1-3) :153-170
[9]  
Chepoi V, 2007, LECT NOTES COMPUT SC, V4627, P59
[10]  
Eppstein D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P29