A Clifford Construction of Multidimensional Prolate Spheroidal Wave Functions

被引:1
作者
Ghaffari, Hamed Baghal [1 ]
Hogan, Jeffrey A. [1 ]
Lakey, Joseph D. [2 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW, Australia
[2] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
来源
2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA) | 2019年
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/sampta45681.2019.9030948
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate the construction of multidimensional prolate spheroidal wave functions using techniques from Clifford analysis. The prolates are defined to be eigenfunctions of a certain differential operator and we propose a method for computing these eigenfunctions through expansions in Clifford-Legendre polynomials. It is shown that the differential operator commutes with a time-frequency limiting operator defined relative to balls in n-dimensional Euclidean space.
引用
收藏
页数:4
相关论文
共 6 条
[1]  
Delanghe R., 2012, CLIFFORD ALGEBRA SPI, V53
[2]  
Ghaffari H. Baghal, PREPRINT
[3]   Prolate spheroidal wave functions on a disc-integration and approximation of two-dimensional bandlimited functions [J].
Shkolnisky, Yoel .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 22 (02) :235-256
[4]   PROLATE SPHEROIDAL WAVE FUNCTIONS FOURIER ANALYSIS + UNCETTAINTY .4. EXTENSIONS TO MANY DIMENSIONS - GENERALIZED PROLATE SPHEROIDAL FUNCTIONS [J].
SLEPIAN, D .
BELL SYSTEM TECHNICAL JOURNAL, 1964, 43 (06) :3009-+
[5]   Prolate spheroidal wavefunctions, quadrature and interpolation [J].
Xiao, H ;
Rokhlin, V ;
Yarvin, N .
INVERSE PROBLEMS, 2001, 17 (04) :805-838
[6]  
Zhang J., 2018, APPL COMPUTATIONAL H