Self-assembled nanoparticle arrays for multiphase trace analyte detection

被引:0
|
作者
Cecchini, Michael P. [1 ]
Turek, Vladimir A. [1 ]
Paget, Jack [1 ]
Kornyshev, Alexei A. [1 ]
Edel, Joshua B. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
关键词
ENHANCED RAMAN-SCATTERING; SINGLE-MOLECULE DETECTION; GOLD NANOPARTICLES; SERS DETECTION; COCAINE; FILMS; TNT;
D O I
10.1038/NMAT3488
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoplasmonic structures designed for trace analyte detection using surface-enhanced Raman spectroscopy typically require sophisticated nanofabrication techniques. An alternative to fabricating such substrates is to rely on self-assembly of nanoparticles into close-packed arrays at liquid/liquid or liquid/air interfaces. The density of the arrays can be controlled by modifying the nanoparticle functionality, pH of the solution and salt concentration. Importantly, these arrays are robust, self-healing, reproducible and extremely easy to handle. Here, we report on the use of such platforms formed by Au nanoparticles for the detection of multi-analytes from the aqueous, organic or air phases. The interfacial area of the Au array in our system is approximate to 25 mm(2) and can be made smaller, making this platform ideal for small-volume samples, low concentrations and trace analytes. Importantly, the ease of assembly and rapid detection make this platform ideal for in-the-field sample testing of toxins, explosives, narcotics or other hazardous chemicals.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 50 条
  • [21] Self-assembled gold nanoparticle-molecular electronic networks
    Zhang, Po
    Venkataraman, Anusha
    Papadopoulos, Chris
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (09):
  • [22] Biodegradable Laser Arrays Self-Assembled from Plant Resources
    Guo, Jiaqi
    Haehnle, Bastian
    Hoenders, Daniel
    Creusen, Guido
    Jiao, Dejin
    Kuehne, Alexander J. C.
    Walther, Andreas
    ADVANCED MATERIALS, 2020, 32 (29)
  • [23] DNA-directed Printing of Self-assembled Nanoparticle Microarrays
    Zheng, Y. H.
    Bach, U.
    NANOTECHNOLOGY 2011: ELECTRONICS, DEVICES, FABRICATION, MEMS, FLUIDICS AND COMPUTATIONAL, NSTI-NANOTECH 2011, VOL 2, 2011, : 192 - 195
  • [24] Functional Materials of 2D Self-Assembled Nanoparticle Monolayers: Preparation and Application
    Li, Wang
    Liu, Jingye
    Tang, Kailin
    Mao, Xi
    Jin, Shaohong
    Deng, Renhua
    Zhu, Jintao
    CHEMISTRY OF MATERIALS, 2024, 36 (19) : 9279 - 9298
  • [25] Simultaneous Determination of Trace Zinc and Cadmium by Anodic Stripping Voltammetry Using a Polymeric Film Nanoparticle Self-Assembled Electrode
    Gholivand, Mohammad Bagher
    Azadbakht, Azadeh
    Pashabadi, Afshin
    ELECTROANALYSIS, 2011, 23 (02) : 364 - 370
  • [26] Self-assembled nanoparticle antireflection coatings on geometrically complex optical surfaces
    Askar, Khalid
    Gu, Zhuxiao
    Leverant, Calen J.
    Wang, Jiamin
    Kim, Christopher
    Jiang, Bin
    Jiang, Peng
    OPTICS LETTERS, 2018, 43 (21) : 5238 - 5241
  • [27] Gold nanoparticle-porphyrin self-assembled multistructures for photoelectric conversion
    Yamada, S
    Tasaki, T
    Akiyama, T
    Terasaki, N
    Nitahara, S
    THIN SOLID FILMS, 2003, 438 : 70 - 74
  • [28] How to make microscale pores on a self-assembled Ag nanoparticle monolayer
    Takekuma, Haruka
    Tagomori, Kyohei
    Shinohara, Shuhei
    Masud, Shihomi
    Xu, Yang
    Chan, Yinthai
    Wang, Pangpang
    Ryuzaki, Sou
    Okamoto, Koichi
    Tamada, Kaoru
    COLLOID AND INTERFACE SCIENCE COMMUNICATIONS, 2019, 30
  • [29] Cooperative Phase Transformation in Self-Assembled Metal-on-Oxide Arrays
    Barcaro, Giovanni
    Fortunelli, Alessandro
    Granozzi, Gaetano
    Sedona, Francesco
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (04) : 1143 - 1146
  • [30] Programmable Wrinkling of Self-Assembled Nanoparticle Films on Shape Memory Polymers
    Gabardo, Christine M.
    Yang, Jie
    Smith, Nathaniel J.
    Adams-McGavin, Robert C.
    Soleymani, Leyla
    ACS NANO, 2016, 10 (09) : 8829 - 8836