Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst

被引:109
|
作者
Xu, Jing [1 ]
Deng, Ya-Qing [1 ]
Luo, Yan [1 ]
Mao, Wei [1 ]
Yang, Xue-Jing [1 ]
Han, Yi-Fan [1 ]
机构
[1] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
基金
美国国家科学基金会;
关键词
Raman spectroscopy; Operando; Kinetics; CO oxidation; Manganese oxides; alpha-Mn2O3; nanocrystals; Temperature-programmed surface reaction; MANGANESE OXIDE CATALYSTS; CARBON-MONOXIDE OXIDATION; SUPPORTED MANGANESE; PHASE-TRANSFORMATION; COMBUSTION; MECHANISM; COPPER; NANOPARTICLES; METHANE; MN2O3;
D O I
10.1016/j.jcat.2013.01.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
alpha-Mn2O3 nanocrystals with uniform morphology prepared by calcining a self-assembled Mn3O4 precursor have proved active (ca. 0.14 molecule nm(-2) s(-1) at 153 degrees C) toward CO oxidation at low temperatures. The reaction orders with respect to CO and O-2 were measured in the temperature range 100-190 degrees C. Operando and in situ Raman spectroscopy are used to determine the near-surface structure of alpha-Mn2O3 nanocrystals during the adsorption and oxidation of CO for the first time. A surface phase transformation from alpha-Mn2O3 to MnjOk (1 < j < 2, 1 < k < 3, and 1 < k/j < 1.5) intermediate species was observed in gaseous CO with the change in temperature. In addition, with the combination of the temperature-programmed desorption of O-2, temperature-programmed surface reaction of CO oxidation, operando Raman spectra, and kinetics parameters, we conclude that the oxidation of CO may proceed through the Langmuir-Hinshelwood mechanism (<200 degrees C) to the Mars van Krevelen mechanism (>350 degrees C) with increasing reaction temperature. In particular, the adsorbed oxygen is deduced to be responsible for CO oxidation at lower temperatures. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [31] LOW-TEMPERATURE OXIDATION OF ALPHA-PU2O3
    BYKOV, VA
    KAPITONOV, VI
    MALININ, GV
    CHINENOV, PP
    KINETICS AND CATALYSIS, 1989, 30 (04) : 857 - 859
  • [32] INFRARED STUDY OF LOW-TEMPERATURE CO ADSORPTION ON LA2O3
    TSYGANENKO, AA
    LAMOTTE, J
    GALLAS, JP
    LAVALLEY, JC
    JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (10): : 4179 - 4183
  • [33] Low-temperature CO oxidation over CUO/Co3O4 catalysts
    Hu, Sulin
    Cheng, Tao
    Zhang, Youjin
    Fang, Zhiyong
    Han, Kaidong
    Gao, Minrui
    ASIAN JOURNAL OF CHEMISTRY, 2008, 20 (06) : 4719 - 4730
  • [34] Temperature-programmed desorption of NO adsorbed on Mn2O3 and Mn3O4
    Yamashita, T
    Vannice, A
    APPLIED CATALYSIS B-ENVIRONMENTAL, 1997, 13 (02) : 141 - 155
  • [35] Mechanism of low-temperature CO oxidation on a model Pd/Fe2O3 catalyst
    A.V. Kalinkin
    V.I. Savchenko
    A.V. Pashis
    Catalysis Letters, 1999, 59 : 115 - 119
  • [36] CO low-temperature oxidation over Au/MOx/Al2O3 catalysts
    Wang, DH
    Hao, ZP
    Kang, SF
    Cheng, DY
    Shi, XC
    CHINESE JOURNAL OF CATALYSIS, 2002, 23 (06) : 489 - 490
  • [37] Deactivation and stability of Au/Al2O3 catalyst for CO low-temperature oxidation
    Zou, XH
    Qi, SX
    Suo, ZH
    An, LD
    Li, F
    CHINESE JOURNAL OF CATALYSIS, 2006, 27 (02) : 161 - 165
  • [38] CO Low-Temperature Oxidation over Au/MOx/Al2O3 Catalysts
    WANG Donghui 1
    2 Research Institute of Chemical Defence
    催化学报, 2002, (06) : 489 - 490
  • [39] Gold catalysts supported on ZnO/Al2O3 for low-temperature CO oxidation
    Kim, Ki-Joong
    Seo, Hyeong-Seok
    Ahn, Ho-Geun
    RESEARCH ON CHEMICAL INTERMEDIATES, 2011, 37 (09) : 1165 - 1172
  • [40] Mechanism of low-temperature CO oxidation on a model Pd/Fe2O3 catalyst
    Kalinkin, AV
    Savchenko, VI
    Pashis, AV
    CATALYSIS LETTERS, 1999, 59 (2-4) : 115 - 119