Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst

被引:112
作者
Xu, Jing [1 ]
Deng, Ya-Qing [1 ]
Luo, Yan [1 ]
Mao, Wei [1 ]
Yang, Xue-Jing [1 ]
Han, Yi-Fan [1 ]
机构
[1] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
基金
美国国家科学基金会;
关键词
Raman spectroscopy; Operando; Kinetics; CO oxidation; Manganese oxides; alpha-Mn2O3; nanocrystals; Temperature-programmed surface reaction; MANGANESE OXIDE CATALYSTS; CARBON-MONOXIDE OXIDATION; SUPPORTED MANGANESE; PHASE-TRANSFORMATION; COMBUSTION; MECHANISM; COPPER; NANOPARTICLES; METHANE; MN2O3;
D O I
10.1016/j.jcat.2013.01.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
alpha-Mn2O3 nanocrystals with uniform morphology prepared by calcining a self-assembled Mn3O4 precursor have proved active (ca. 0.14 molecule nm(-2) s(-1) at 153 degrees C) toward CO oxidation at low temperatures. The reaction orders with respect to CO and O-2 were measured in the temperature range 100-190 degrees C. Operando and in situ Raman spectroscopy are used to determine the near-surface structure of alpha-Mn2O3 nanocrystals during the adsorption and oxidation of CO for the first time. A surface phase transformation from alpha-Mn2O3 to MnjOk (1 < j < 2, 1 < k < 3, and 1 < k/j < 1.5) intermediate species was observed in gaseous CO with the change in temperature. In addition, with the combination of the temperature-programmed desorption of O-2, temperature-programmed surface reaction of CO oxidation, operando Raman spectra, and kinetics parameters, we conclude that the oxidation of CO may proceed through the Langmuir-Hinshelwood mechanism (<200 degrees C) to the Mars van Krevelen mechanism (>350 degrees C) with increasing reaction temperature. In particular, the adsorbed oxygen is deduced to be responsible for CO oxidation at lower temperatures. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 51 条
[1]   Operando methodology:: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions [J].
Bañares, MA .
CATALYSIS TODAY, 2005, 100 (1-2) :71-77
[2]   ELECTROCHROMIC REACTIONS IN MANGANESE OXIDES .1. RAMAN ANALYSIS [J].
BERNARD, MC ;
GOFF, AHL ;
THI, BV ;
DETORRESI, SC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (11) :3065-3070
[3]   Resonance Raman effects in TS-1:: the structure of Ti(IV) species and reactivity towards H2O, NH3 and H2O2:: an in situ study [J].
Bordiga, S ;
Damin, A ;
Bonino, F ;
Ricchiardi, G ;
Zecchina, A ;
Tagliapietra, R ;
Lamberti, C .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (20) :4390-4393
[4]   KINETICS OF HYDROGEN AND CARBON MONOXIDE OXIDATION OVER A MANGANESE OXIDE [J].
BROOKS, CS .
JOURNAL OF CATALYSIS, 1967, 8 (03) :272-&
[5]   Vibrational spectroscopy of bulk and supported manganese oxides [J].
Buciuman, F ;
Patcas, F ;
Craciun, R ;
Zahn, DRT .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (01) :185-190
[6]   A spillover approach to oxidation catalysis over copper and manganese mixed oxides [J].
Buciuman, FC ;
Patcas, F ;
Hahn, T .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 1999, 38 (4-6) :563-569
[7]   Carbon Monoxide Oxidation Catalysed by Exotemplated Manganese Oxides [J].
Carabineiro, S. A. C. ;
Bastos, S. S. T. ;
Orfao, J. J. M. ;
Pereira, M. F. R. ;
Delgado, J. J. ;
Figueiredo, J. L. .
CATALYSIS LETTERS, 2010, 134 (3-4) :217-227
[8]   Highly active surfaces for CO oxidation on rh, pd, and pt [J].
Chen, M. S. ;
Cal, Y. ;
Yan, Z. ;
Gath, K. K. ;
Axnanda, S. ;
Goodman, D. Wayne .
SURFACE SCIENCE, 2007, 601 (23) :5326-5331
[9]   Self-assembly of manganese oxide nanoparticles and hollow spheres. Catalytic activity in carbon monoxide oxidation [J].
Ching, Stanton ;
Kriz, David A. ;
Luthy, Kurt M. ;
Njagi, Eric C. ;
Suib, Steven L. .
CHEMICAL COMMUNICATIONS, 2011, 47 (29) :8286-8288
[10]   Structure/activity correlation for unpromoted and CeO2-promoted MnO2/SiO2 catalysts [J].
Craciun, R .
CATALYSIS LETTERS, 1998, 55 (01) :25-31