C-Amino-1,2,4-triazoles are challenging polynitrogen substrates for metal-catalyzed arylation due to their multidentate character, enhanced coordinating ability and decreased nucleophilicity of the amino group. In the present study, the Buchwald-Hartwig cross-coupling of diverse 3(5)-amino-1,2,4-triazoles with aryl chlorides and bromides delivering (hetero)arylamino-1,2,4-triazoles in good-to-excellent yields under Pd/NHC catalysis was developed. The use of Pd complexes with bulky NHC ligands such as IPr*OMe and TPEDO (1,1,2,2-tetraphenylethane-1,2-diol) as an in situ Pd(ii) to Pd(0) reductant enabled the selective arylation of the NH2 group even in acidic NH unprotected substrates and deactivated 1-substituted 5-amino- and 4-substituted 3-amino-1,2,4-triazoles. The reaction mechanism and structure-activity relationships were studied with DFT calculations. A significant effect of the position of the N-substituent in the 1,2,4-triazole ring on the favorable reaction pathways was revealed.