RANK EQUALITIES FOR MOORE-PENROSE INVERSE AND DRAZIN INVERSE OVER QUATERNION

被引:1
作者
Zhang, Huasheng [1 ]
机构
[1] Liaocheng Univ, Dept Math, Liaocheng 252059, Shandong, Peoples R China
关键词
Moore-penrose inverse; rank; quaternion matrix; Drazin inverse; REPRESENTATIONS; SUBMATRICES;
D O I
10.15352/afa/1399899936
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the ranks of four real matrices G(i)(i = 0, 1, 2, 3) in M-dagger, where M = M-0 + M(1)i +M(2)j +M(3)k is an arbitrary quaternion matrix, and M-dagger = G(0) + G(1)i + G(2)j + G(3)k is the Moore-Penrose inverse of M. Similarly, the ranks of four real matrices in Drazin inverse of a quaternion matrix are also presented. As applications, the necessary and sufficient conditions for M-dagger is pure real or pure imaginary Moore-Penrose inverse and N-D is pure real or pure imaginary Drazin inverse are presented, respectively.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 18 条