ρ-Einstein Solitons on Warped Product Manifolds and Applications

被引:3
作者
Bin Turki, Nasser [1 ]
Shenawy, Sameh [2 ]
EL-Sayied, H. K. [3 ]
Syied, N. [2 ]
Mantica, C. A. [4 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Modern Acad Engn & Technol, Maadi, Egypt
[3] Tanata Univ, Fac Sci, Math Dept, Tanta, Egypt
[4] IIS Lagrange, Via L Modignani 65, I-20161 Milan, Italy
关键词
VECTOR-FIELDS; RICCI; CLASSIFICATION; RIGIDITY;
D O I
10.1155/2022/1028339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this research is to investigate how a rho-Einstein soliton structure on a warped product manifold affects its base and fiber factor manifolds. Firstly, the pertinent properties of rho-Einstein solitons are provided. Secondly, numerous necessary and sufficient conditions of a rho-Einstein soliton warped product manifold to make its factor rho-Einstein soliton are examined. On a rho-Einstein gradient soliton warped product manifold, necessary and sufficient conditions for making its factor rho-Einstein gradient soliton are presented. rho-Einstein solitons on warped product manifolds admitting a conformal vector field are also considered. Finally, the structure of rho-Einstein solitons on some warped product space-times is investigated.
引用
收藏
页数:10
相关论文
共 40 条
[1]  
Agricola I, 2002, GLOBAL ANAL DIFFEREN, V52
[2]   SOME CHARACTERIZATIONS FOR COMPACT ALMOST RICCI SOLITONS [J].
Barros, A. ;
Ribeiro, E., Jr. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) :1033-1040
[3]   A note on rigidity of the almost Ricci soliton [J].
Barros, Abdenago ;
Gomes, Jose N. ;
Ribeiro, Ernani, Jr. .
ARCHIV DER MATHEMATIK, 2013, 100 (05) :481-490
[4]  
Besse AL., 2008, EINSTEIN MANIFOLDS
[5]  
Bourguignon J. P., 1981, Lecture Notes in Mathematics, V838, P42
[6]  
Brendle S, 2014, J DIFFER GEOM, V97, P191
[7]   Locally Conformally Flat Lorentzian Gradient Ricci Solitons [J].
Brozos-Vazquez, M. ;
Garcia-Rio, E. ;
Gavino-Fernandez, S. .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) :1196-1212
[8]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[9]   Gradient Einstein solitons [J].
Catino, Giovanni ;
Mazzieri, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 :66-94
[10]   Generalized quasi-Einstein manifolds with harmonic Weyl tensor [J].
Catino, Giovanni .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) :751-756