Sufficient conditions for maximally restricted edge connected graphs

被引:1
作者
Qin, Yingying [1 ]
Ou, Jianping [1 ]
机构
[1] Wuyi Univ, Dept Math, Jiangmen 529020, Peoples R China
基金
中国国家自然科学基金;
关键词
Restricted edge connectivity; Degree sequence;
D O I
10.1016/j.disc.2012.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown in this work that if graph G has degree sequence d(1) >= d(2) >= ... >= d(n) >= 2 with Sigma(l)(i=1)(d(i) + d(n-i-1)) > l(n + 2) holding for every 1 <= l <= n/2 - 2, then it is lambda'-optimal. The lower bound on the degree-summation is exemplified sharp. This observation generalizes the corresponding results of Bollobas on maximal edge connectivity of graphs. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2969 / 2972
页数:4
相关论文
共 16 条
  • [1] Sufficient conditions for λ′-optirnality in graphs with girth g
    Balbuena, C
    García-Vázquez, P
    Marcote, X
    [J]. JOURNAL OF GRAPH THEORY, 2006, 52 (01) : 73 - 86
  • [2] COMBINATORIAL OPTIMIZATION PROBLEMS IN THE ANALYSIS AND DESIGN OF PROBABILISTIC NETWORKS
    BAUER, D
    BOESCH, F
    SUFFEL, C
    TINDELL, R
    [J]. NETWORKS, 1985, 15 (02) : 257 - 271
  • [3] GRAPHS WITH EQUAL EDGE CONNECTIVITY AND MINIMUM DEGREE
    BOLLOBAS, B
    [J]. DISCRETE MATHEMATICS, 1979, 28 (03) : 321 - 323
  • [4] Bondy J. A., 1976, Graduate Texts in Mathematics, V290
  • [5] ON COMPUTING A CONDITIONAL EDGE-CONNECTIVITY OF A GRAPH
    ESFAHANIAN, AH
    HAKIMI, SL
    [J]. INFORMATION PROCESSING LETTERS, 1988, 27 (04) : 195 - 199
  • [6] EXTRACONNECTIVITY OF GRAPHS WITH LARGE GIRTH
    FABREGA, J
    FIOL, MA
    [J]. DISCRETE MATHEMATICS, 1994, 127 (1-3) : 163 - 170
  • [7] Sufficient conditions for graphs to be λ′-optimal super-edge-connected and maximally edge-connected
    Hellwig, A
    Volkmann, L
    [J]. JOURNAL OF GRAPH THEORY, 2005, 48 (03) : 228 - 246
  • [8] Maximally edge-connected and vertex-connected graphs and digraphs: A survey
    Hellwig, Angelika
    Volkmann, Lutz
    [J]. DISCRETE MATHEMATICS, 2008, 308 (15) : 3265 - 3296
  • [9] Li QL, 1998, NETWORKS, V31, P61, DOI 10.1002/(SICI)1097-0037(199803)31:2<61::AID-NET1>3.0.CO
  • [10] 2-H