Strong consistency of multivariate spectral variance estimators in Markov chain Monte Carlo

被引:23
作者
Vats, Dootika [1 ]
Flegal, James M. [2 ]
Jones, Galin L. [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
关键词
Markov chain; Monte Carlo; spectral methods; standard errors; STRONG INVARIANCE-PRINCIPLES; VALUED RANDOM-VARIABLES; GEOMETRIC ERGODICITY; METROPOLIS ALGORITHMS; CONVERGENCE-RATES; GIBBS SAMPLER; PARTIAL-SUMS; APPROXIMATION; MODEL; HETEROSKEDASTICITY;
D O I
10.3150/16-BEJ914
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. TheMonte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community. We present a class of multivariate spectral variance estimators for the asymptotic covariance matrix in the Markov chain central limit theorem and provide conditions for strong consistency. We examine the finite sample properties of the multivariate spectral variance estimators and its eigenvalues in the context of a vector autoregressive process of order 1.
引用
收藏
页码:1860 / 1909
页数:50
相关论文
共 64 条
[1]  
Acosta F., 2015, PREPRINT
[2]  
ANDERSON TW, 1971, STAT ANAL TIME SERIE
[3]   HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATION [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (03) :817-858
[4]  
[Anonymous], SPRINGER TEXTS STAT
[5]  
[Anonymous], 2008, SPRINGER SERIES STAT
[6]  
[Anonymous], 1992, Statistical Science, DOI [10.1214/ss/1177011137, DOI 10.1214/SS/1177011137]
[7]   KERNEL ESTIMATORS OF ASYMPTOTIC VARIANCE FOR ADAPTIVE MARKOV CHAIN MONTE CARLO [J].
Atchade, Yves F. .
ANNALS OF STATISTICS, 2011, 39 (02) :990-1011
[8]   APPROXIMATION THEOREMS FOR INDEPENDENT AND WEAKLY DEPENDENT RANDOM VECTORS [J].
BERKES, I ;
PHILIPP, W .
ANNALS OF PROBABILITY, 1979, 7 (01) :29-54
[9]  
BILLINGSLEY P., 2008, Probability and Measure
[10]  
Brooks S, 2011, CH CRC HANDB MOD STA, P1, DOI 10.1201/b10905