Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films

被引:10
作者
Di Lanbo [1 ]
Li Xiaosong [1 ]
Zhao Tianliang [1 ]
Chang Dalei [1 ]
Liu Qianqian [1 ]
Zhu Aimin [1 ]
机构
[1] Dalian Univ Technol, Lab Plasma Phys Chem, Sch Phys & Optoelect Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
plasma CVD; TiO2 photocatalytic films; atmospheric-pressure cold plasma; dielectric barrier discharge (DBD); optical emission spectra (OES); CHEMICAL-VAPOR-DEPOSITION; DIELECTRIC BARRIER DISCHARGES; TITANIUM-DIOXIDE; NONEQUILIBRIUM; COATINGS; ANATASE; TEMPERATURE; OXIDATION; POWDERS;
D O I
10.1088/1009-0630/15/1/11
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
To deposit TiO2 films through plasma CVD, the partial pressure ratio of O-2 to TiCl4 should be greater than the stoichiometric ratio (p(O2)/p(TiCl4) > 1). However, this may lead to the formation of powder instead of film on the substrate when using volume dielectric barrier discharge (volume-DBD) at atmospheric pressure. In this study, by adding N-2 into the working gas Ar, TiO2 photocatalytic films were successfully fabricated in the presence of excess O-2 (p(O2)/p(TiCl4) = 2.6) by using a wire-to-plate atmospheric-pressure volume-DBD. The tuning effect of N-2 on the deposition of TiO2 film was studied in detail. The results showed that by increasing the N-2 content, the deposition rate and particle size of the TiO2 film were reduced, and its photocatalytic activity was enhanced. The tuning mechanism of N-2 is further discussed.
引用
收藏
页码:64 / 69
页数:6
相关论文
共 32 条
[1]   Chemical vapor deposition enhanced by atmospheric pressure non-thermal non-equilibrium plasmas [J].
Alexandrov, SE ;
Hitchman, ML .
CHEMICAL VAPOR DEPOSITION, 2005, 11 (11-12) :457-468
[2]  
[Anonymous], 1992, HDB XRAY PHOTOELECTR
[3]   Dielectric and infrared properties of TiO2 films containing anatase and rutile [J].
Busani, T ;
Devine, RAB .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (08) :870-875
[4]   Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources [J].
Chen, Chienchih ;
Bai, Hsunling ;
Chang, Sue-min ;
Chang, Chungliang ;
Den, Walter .
JOURNAL OF NANOPARTICLE RESEARCH, 2007, 9 (03) :365-375
[5]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[6]   Chemical vapour deposition of coatings [J].
Choy, KL .
PROGRESS IN MATERIALS SCIENCE, 2003, 48 (02) :57-170
[7]   Atmospheric-pressure plasma CVD of TiO2 photocatalytic films using surface dielectric barrier discharge [J].
Di, Lan-Bo ;
Li, Xiao-Song ;
Shi, Chuan ;
Xu, Yong ;
Zhao, De-Zhi ;
Zhu, Ai-Min .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (03)
[8]   Influence of Atmospheric Plasma Source and Gas Composition on the Properties of Deposited Siloxane Coatings [J].
Dowling, Denis P. ;
Ramamoorthy, Amsarani ;
Rahman, Mahfujur ;
Mooney, Damian A. ;
MacElroy, J. M. Don .
PLASMA PROCESSES AND POLYMERS, 2009, 6 :S483-S489
[9]  
Griem H R., 2005, Principles of Plasma Spectroscopy
[10]   Low Temperature Growth of Photoactive Titania by Atmospheric Pressure Plasma [J].
Hodgkinson, John L. ;
Yates, Heather M. ;
Sheel, David W. .
PLASMA PROCESSES AND POLYMERS, 2009, 6 (09) :575-582