Parabolic Optimal Transport Equations on Manifolds

被引:7
作者
Kim, Young-Heon [2 ]
Streets, Jeffrey [3 ]
Warren, Micah [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92717 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
BOUNDARY-VALUE PROBLEM; POTENTIAL FUNCTIONS; POLAR FACTORIZATION; REGULARITY; MAPS; GEOMETRY; CONVEXITY;
D O I
10.1093/imrn/rnr188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a parabolic equation for finding solutions to the optimal transport problem on compact Riemannian manifolds with general cost functions. We show that if the cost satisfies the strong Ma-Trudinger-Wang condition and the stay-away singularity property, then the solution to the parabolic flow with any appropriate initial condition exists for all time and converges exponentially to the solution to the optimal transportation problem. Such results hold in particular on the sphere for the distance squared cost of the round metric and for the far-field reflector antenna cost, among others.
引用
收藏
页码:4325 / 4350
页数:26
相关论文
共 40 条