Efficient numerical method for solving 1D degenerate Keller-Segel systems

被引:0
|
作者
Koleva, Miglena N. [1 ]
机构
[1] Univ Rousse, FNSE, Rousse 7017, Bulgaria
来源
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12) | 2012年 / 1497卷
关键词
Keller-Segel systems; degenerate problems; positivity preserving; convergence; GLOBAL EXISTENCE;
D O I
10.1063/1.4766782
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a second order, positive preserving explicit-implicit numerical method for solving Keller-Segel system of degenerate type. The approximation is based on finite volume method and flux-limiter technique in space and explicit Euler method in time. In order to save computational time we use decoupling procedure for solving the discrete system. Numerical results are also presented.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 50 条
  • [21] Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model
    Xingjie Helen Li
    Chi-Wang Shu
    Yang Yang
    Journal of Scientific Computing, 2017, 73 : 943 - 967
  • [22] Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model
    Li, Xingjie Helen
    Shu, Chi-Wang
    Yang, Yang
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 943 - 967
  • [23] The fast signal diffusion limit in Keller-Segel(-fluid) systems
    Wang, Yulan
    Winkler, Michael
    Xiang, Zhaoyin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
  • [24] Efficient Numerical Schemes for a Two-Species Keller-Segel Model and Investigation of Its Blowup Phenomena in 3D
    Huang, Xueling
    Shen, Jie
    ACTA APPLICANDAE MATHEMATICAE, 2024, 190 (01)
  • [25] Boundary layer analysis for a 2-D Keller-Segel model
    Meng, Linlin
    Xu, Wen-Qing
    Wang, Shu
    OPEN MATHEMATICS, 2020, 18 : 1895 - 1914
  • [26] BLOW-UP IN FINITE OR INFINITE TIME FOR QUASILINEAR DEGENERATE KELLER-SEGEL SYSTEMS OF PARABOLIC-PARABOLIC TYPE
    Ishida, Sachiko
    Yokota, Tomomi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (10): : 2569 - 2596
  • [27] Boundedness of Classical Solutions to a Degenerate Keller-Segel Type Model with Signal-Dependent Motilities
    Fujie, Kentaro
    Jiang, Jie
    ACTA APPLICANDAE MATHEMATICAE, 2021, 176 (01)
  • [28] Uniqueness of weak solutions to a high dimensional Keller-Segel equation with degenerate diffusion and nonlocal aggregation
    Hong, Liang
    Wang, Wei
    Zheng, Sining
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 134 : 204 - 214
  • [29] Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type
    Hashira, Takahiro
    Ishida, Sachiko
    Yokota, Tomomi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (10) : 6459 - 6485
  • [30] Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation
    Cao, Xinru
    Ishida, Sachiko
    NONLINEARITY, 2014, 27 (08) : 1899 - 1913