The Rate of Active Lithium Loss from a Soft Carbon Negative Electrode as a Function of Temperature, Time and Electrode Potential

被引:46
作者
Sinha, Nupur Nikkan [1 ]
Marks, T. H. [1 ]
Dahn, H. M. [1 ]
Smith, A. J. [1 ]
Burns, J. C. [1 ]
Coyle, D. J. [1 ]
Dahn, J. J. [1 ]
Dahn, J. R. [1 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LI-ION CELLS; IMPEDANCE REDUCING ADDITIVES; SELF-DISCHARGE BEHAVIOR; SURFACE-CHEMISTRY; AGING MECHANISMS; DEPENDENCE; MODEL;
D O I
10.1149/2.048210jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Active lithium in the negative electrode of a Li-ion cell reacts with electrolyte to form an ever-thickening solid electrolyte interphase. The rate of this reaction can be monitored as a function of temperature, time and electrode potential using storage and symmetric cell studies. Using the soft carbon, petroleum coke, as a model negative electrode material, experiments measuring the open circuit voltage (OCV) change with time of Li/coke cells were made to measure the rate of loss of active lithium. The capacity loss with cycle number or time of coke/coke symmetric cells was also used to measure the rate of Li loss. The results on over 100 test cells show that: 1) the reaction rate decreases by about a factor of 2-4 as the electrode potential increases from 0.005 to 1.0 V; 2) the reaction rate increases approximately 3-10 fold between 30 and 60 degrees C depending on the electrode potential; 3) The reaction rates are within a factor of two, and may be the same, for electrodes at OCV or undergoing cycling; 4) the reaction rate is larger when vinylene carbonate (VC) is present in the electrolyte at 30 degrees C for all potentials and times studied and 5) the reaction rate is about two times smaller in the presence of VC at 60 degrees C for potentials above 0.4 V. A significant number of further experiments are required to develop accurate theoretical models of the reactivity of intercalated lithium with electrolyte as a function of time, temperature and potential. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.048210jes] All rights reserved.
引用
收藏
页码:A1672 / A1681
页数:10
相关论文
共 23 条
[1]   THE CORRELATION BETWEEN SURFACE-CHEMISTRY, SURFACE-MORPHOLOGY, AND CYCLING EFFICIENCY OF LITHIUM ELECTRODES IN A FEW POLAR APROTIC SYSTEMS [J].
AURBACH, D ;
GOFER, Y ;
LANGZAM, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (11) :3198-3205
[2]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[3]   IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS [J].
AURBACH, D ;
DAROUX, ML ;
FAGUY, PW ;
YEAGER, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) :1611-1620
[4]   Main aging mechanisms in Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Bonhomme, F ;
Blanchard, P ;
Herreyre, S ;
Nechev, K ;
Staniewicz, RJ .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :90-96
[5]   Aging mechanism in Li ion cells and calendar life predictions [J].
Broussely, M ;
Herreyre, S ;
Biensan, P ;
Kasztejna, P ;
Nechev, K ;
Staniewicz, RJ .
JOURNAL OF POWER SOURCES, 2001, 97-8 :13-21
[6]   Impedance Reducing Additives and Their Effect on Cell Performance I. LiN(CF3SO2)2 [J].
Burns, J. C. ;
Sinha, N. N. ;
Jain, Gaurav ;
Ye, Hui ;
VanElzen, Collette M. ;
Lamanna, W. M. ;
Xiao, A. ;
Scott, Erik ;
Choi, J. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) :A1095-A1104
[7]   Impedance Reducing Additives and Their Effect on Cell Performance II. C3H9B3O6 [J].
Burns, J. C. ;
Sinha, N. N. ;
Jain, Gaurav ;
Ye, Hui ;
VanElzen, Collette M. ;
Lamanna, W. M. ;
Xiao, A. ;
Scott, Erik ;
Choi, J. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) :A1105-A1113
[8]   The Impact of Varying the Concentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells [J].
Burns, J. C. ;
Sinha, N. N. ;
Coyle, D. J. ;
Jain, Gaurav ;
VanElzen, Collette M. ;
Lamanna, W. M. ;
Xiao, A. ;
Scott, Erik ;
Gardner, J. P. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) :A85-A90
[9]   Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms [J].
Burns, J. C. ;
Krause, L. J. ;
Le, Dinh-Ba ;
Jensen, L. D. ;
Smith, A. J. ;
Xiong, Deijun ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) :A1417-A1422
[10]   Evaluation of Effects of Additives in Wound Li-Ion Cells Through High Precision Coulometry [J].
Burns, J. C. ;
Jain, Gaurav ;
Smith, A. J. ;
Eberman, K. W. ;
Scott, Erik ;
Gardner, J. P. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A255-A261