Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth

被引:452
|
作者
Artursson, V
Finlay, RD
Jansson, JK
机构
[1] Swedish Univ Agr Sci, Dept Microbiol, S-75007 Uppsala, Sweden
[2] Swedish Univ Agr Sci, Dept Forest Mycol & Pathol, S-75007 Uppsala, Sweden
关键词
D O I
10.1111/j.1462-2920.2005.00942.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Arbuscular mycorrhizal (AM) fungi and bacteria can interact synergistically to stimulate plant growth through a range of mechanisms that include improved nutrient acquisition and inhibition of fungal plant pathogens. These interactions may be of crucial importance within sustainable, low-input agricultural cropping systems that rely on biological processes rather than agrochemicals to maintain soil fertility and plant health. Although there are many studies concerning interactions between AM fungi and bacteria, the underlying mechanisms behind these associations are in general not very well understood, and their functional properties still require further experimental confirmation. Future mycorrhizal research should therefore strive towards an improved understanding of the functional mechanisms behind such microbial interactions, so that optimized combinations of microorganisms can be applied as effective inoculants within sustainable crop production systems. In this context, the present article seeks to review and discuss the current knowledge concerning interactions between AM fungi and plant growth-promoting rhizobacteria, the physical interactions between AM fungi and bacteria, enhancement of phosphorus and nitrogen bioavailability through such interactions, and finally the associations between AM fungi and their bacterial endosymbionts. Overall, this review summarizes what is known to date within the present field, and attempts to identify promising lines of future research.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Interactions between arbuscular mycorrhizal fungi and soil bacteria
    Mohammad Miransari
    Applied Microbiology and Biotechnology, 2011, 89 : 917 - 930
  • [2] Interactions between arbuscular mycorrhizal fungi and soil bacteria
    Miransari, Mohammad
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 89 (04) : 917 - 930
  • [3] Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria
    Bianciotto, V
    Minerdi, D
    Perotto, S
    Bonfante, P
    PROTOPLASMA, 1996, 193 (1-4) : 123 - 131
  • [4] Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria:: as revealed by different combinations
    Jaederlund, Lotta
    Arthurson, Veronica
    Granhall, Ulf
    Jansson, Janet K.
    FEMS MICROBIOLOGY LETTERS, 2008, 287 (02) : 174 - 180
  • [5] Positive interactions between mycorrhizal fungi and bacteria are widespread and benefit plant growth
    Berrios, Louis
    Yeam, Jay
    Holm, Lindsey
    Robinson, Wallis
    Pellitier, Peter T.
    Chin, Mei Lin
    Henkel, Terry W.
    Peay, Kabir G.
    CURRENT BIOLOGY, 2023, 33 (14) : 2878 - +
  • [6] Response of plant growth to Collembola, arbuscular mycorrhizal and plant pathogenic fungi interactions
    Innocenti, Gloria
    Ganassi, Sonia
    Montanari, Matteo
    Branzanti, Maria Barbara
    Sabatini, Maria Agnese
    BULLETIN OF INSECTOLOGY, 2009, 62 (02): : 191 - 195
  • [7] PLANT-ARBUSCULAR MYCORRHIZAL FUNGI INTERACTIONS
    Camarena-Gutierrez, Gabriel
    REVISTA CHAPINGO SERIE CIENCIAS FORESTALES Y DEL AMBIENTE, 2012, 18 (03) : 409 - 421
  • [8] Cooperation between arbuscular mycorrhizal fungi and plant growth-promoting bacteria and their effects on plant growth and soil quality
    Yu, Lu
    Zhang, Hui
    Zhang, Wantong
    Liu, Kesi
    Liu, Miao
    Shao, Xinqing
    PEERJ, 2022, 10
  • [9] Arbuscular mycorrhizal fungi, Collembola and plant growth
    Gange, A
    TRENDS IN ECOLOGY & EVOLUTION, 2000, 15 (09) : 369 - 372
  • [10] INTERACTIONS BETWEEN PLANTS AND ARBUSCULAR MYCORRHIZAL FUNGI
    Hata, Shingo
    Kobae, Yoshihiro
    Banba, Mari
    INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 281, 2010, 281 : 1 - 48