Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review

被引:436
|
作者
Liu, Xian-Ming [1 ,2 ]
Huang, Zhen Dong [1 ]
Oh, Sei Woon [1 ]
Zhang, Biao [1 ]
Ma, Peng-Cheng [1 ]
Yuen, Matthew M. F. [1 ]
Kim, Jang-Kyo [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
[2] Luoyang Normal Univ, Coll Chem & Chem Engn, Luoyang 471022, Henan, Peoples R China
关键词
Carbon nanotubes; Nano composites; Electrical properties; Scanning electron microscopy (SEM); Transmission electron microscopy (TEM); ELECTROCHEMICAL PROPERTIES; ANODE MATERIALS; CONDUCTIVE ADDITIVES; CATHODE MATERIALS; LITHIUM STORAGE; HIGH-CAPACITY; HIGH-POWER; REVERSIBLE CAPACITY; INSERTION ELECTRODE; NEGATIVE-ELECTRODE;
D O I
10.1016/j.compscitech.2011.11.019
中图分类号
TB33 [复合材料];
学科分类号
摘要
The ever-increasing demands for higher energy density and higher power capacity of Li-ion secondary batteries have led to search for electrode materials whose capacities and performance are better than those available today. Carbon nanotubes (CNTs), because of their unique 1D tubular structure, high electrical and thermal conductivities and extremely large surface area, have been considered as ideal additive materials to improve the electrochemical characteristics of both the anode and cathode of Li-ion batteries with much enhanced energy conversion and storage capacities. Recent development of electrode materials for LIBs has been driven mainly by hybrid nanostructures consisting of Li storage compounds and CNTs. In this paper, recent advances are reviewed of the use of CNTs and the methodologies developed to synthesize CNT-based composites for electrode materials. The physical, transport and electrochemical behaviors of the electrodes made from composites containing CNTs are discussed. The electrochemical performance of LIBs affected by the presence of CNTs in terms of energy and power densities, rate capacity, cyclic life and safety are highlighted in comparison with those without or containing other types of carbonaceous materials. The challenges that remain in using CNTs and CNT-based composites, as well as the prospects for exploiting them in the future are discussed. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:121 / 144
页数:24
相关论文
共 50 条
  • [41] Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries
    Pomerantseva, Ekaterina
    Resini, Carlo
    Kovnir, Kirill
    Kolen'ko, Yury V.
    ADVANCES IN PHYSICS-X, 2017, 2 (02): : 211 - 253
  • [42] Silicon-based composite anodes for Li-ion rechargeable batteries
    Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
    不详
    J. Mater. Chem., 2007, 30 (3229-3237):
  • [43] Plasma-Modified Cellulose-Based Li-Ion Electrodes for Rechargeable Aqueous Li-Ion Batteries
    Rousselot, Steeve
    Profili, Jacopo
    Hadidi, Lida
    Tomassi, Erica
    Nicolas, Maxime
    Briqueleur, Elsa
    Ayme-Perrot, David
    Stafford, Luc
    Dolle, Mickael
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (48) : 17098 - 17110
  • [44] Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries
    Qijiu Deng
    Yuan Wang
    Yu Zhao
    Jingze Li
    Ionics, 2017, 23 : 2613 - 2619
  • [45] Heavily vanadium-doped LiFePO4 olivine as electrode material for Li-ion aqueous rechargeable batteries
    Vujkovic, Milica
    Popovic, Maja
    Cebela, Maria
    Jugovic, Dragana
    MATERIALS RESEARCH EXPRESS, 2024, 11 (05)
  • [46] Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries
    Deng, Qijiu
    Wang, Yuan
    Zhao, Yu
    Li, Jingze
    IONICS, 2017, 23 (10) : 2613 - 2619
  • [47] Porous Co3O4 nanorods as superior electrode material for supercapacitors and rechargeable Li-ion batteries
    S. Vijayanand
    R. Kannan
    H. S. Potdar
    V. K. Pillai
    P. A. Joy
    Journal of Applied Electrochemistry, 2013, 43 : 995 - 1003
  • [48] Intercalated SiOC/graphene composites as anode material for li-ion batteries
    Ren, YuRong
    Yang, Bo
    Huang, XiaoBing
    Chu, FuQiang
    Qiu, Jianhua
    Ding, JianNing
    SOLID STATE IONICS, 2015, 278 : 198 - 202
  • [49] Porous Co3O4 nanorods as superior electrode material for supercapacitors and rechargeable Li-ion batteries
    Vijayanand, S.
    Kannan, R.
    Potdar, H. S.
    Pillai, V. K.
    Joy, P. A.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (10) : 995 - 1003
  • [50] THE SnO2 NANOTUBE WITH CNT CORE STRUCTURE (SnO2@ VOID@CNT) AND GRAPHENE COMPOSITE ELECTRODE FOR LI-ION BATTERIES
    Alaf, Mirac
    THERMAL SCIENCE, 2023, 27 (4B): : 3217 - 3228