Rank and perimeter preservers of Boolean rank-1 matrices

被引:0
|
作者
Song, SZ [1 ]
Beasley, LB [1 ]
Cheon, GS [1 ]
Jun, YB [1 ]
机构
[1] Cheju Natl Univ, Dept Math, Jeju 690756, South Korea
关键词
Boolean linear operator; perimeter; (U; V)-operator;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For 'a Boolean rank-1 matrix A = ab(t), we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the Boolean linear operators that preserve rank and perimeter of Boolean rank-1 matrices.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 50 条
  • [31] Rank preservers of matrices over max algebra
    Bapat, RB
    Pati, S
    Song, SZ
    LINEAR & MULTILINEAR ALGEBRA, 2000, 48 (02): : 149 - 164
  • [32] ON THE CONDITION OF NEARLY SINGULAR MATRICES UNDER RANK-1 PERTURBATIONS
    CHAN, TF
    RESASCO, DC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 76 : 223 - 232
  • [33] On the binary and Boolean rank of regular matrices
    Haviv, Ishay
    Parnas, Michal
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2023, 134 : 73 - 86
  • [34] Boolean rank of upset tournament matrices
    Brown, David E.
    Roy, Scott
    Lundgren, J. Richard
    Siewert, Daluss J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3239 - 3246
  • [35] Term rank preservers of bisymmetric matrices over semirings
    Sassanapitax, L.
    Pianskool, S.
    Siraworakun, A.
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [36] On Boolean matrices with full factor rank
    Shitov, Ya. N.
    SBORNIK MATHEMATICS, 2013, 204 (11) : 1691 - 1699
  • [37] RANK PRESERVERS AND INERTIA PRESERVERS
    LOEWY, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 162 : 764 - 770
  • [38] On the Binary and Boolean Rank of Regular Matrices
    Haviv, Ishay
    Parnas, Michal
    arXiv, 2022,
  • [39] RANK OF MATRICES WITH RANDOM BOOLEAN ELEMENTS
    KOZLOV, MV
    DOKLADY AKADEMII NAUK SSSR, 1966, 169 (05): : 1013 - &
  • [40] LINEAR PRESERVERS OF BOOLEAN RANK BETWEEN DIFFERENT MATRIX SPACES
    Beasley, LeRoy B.
    Kang, Kyung-Tae
    Song, Seok-Zun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (03) : 625 - 636