A new Turan-type theorem for cliques in graphs

被引:10
作者
Eckhoff, J [1 ]
机构
[1] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
关键词
Turan's theorem; Zykov's theorem; clique vectors;
D O I
10.1016/j.disc.2003.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Turin's theorem (Mat. Fiz. Lapok 48 (1941) 436) (or rather its extension by Zykov (Mat. Sbomik 24 (66) (1949) 163) answers the following question: For k = 2,..., r, what is the maximum number of k-cliques (i.e., subgraphs on k vertices) in a finite graph G, given the clique number r and the number of vertices of G? Here we address-and answer -the following closely related question: For k = 3,...,r, what is the maximum number of k-cliques in G, given the clique number r and the number of edges of G? We also prove a "stability theorem" which shows that our result is best possible in a strong sense. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 14 条
[1]  
Andrasfai B., 1974, Discrete Mathematics, V8, P205, DOI 10.1016/0012-365X(74)90133-2
[2]  
BILLERA LJ, 2003, HDB DISCRETE COMPUTA, P291
[3]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[4]   On colouring the nodes of a network [J].
Brooks, RL .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 :194-197
[5]   The maximum number of triangles in a K4-free graph [J].
Eckhoff, J .
DISCRETE MATHEMATICS, 1999, 194 (1-3) :95-106
[6]  
ECKHOFF J, UNPUB AM MATH MONTHL
[7]  
Erdo P., 1962, Magyar Tud. Akad. Mat. Kutato Int. Kozl, VA3, P459
[8]  
FISHER DC, 1990, C NUMER, V70, P217
[9]   SHADOWS OF COLORED COMPLEXES [J].
FRANKL, P ;
FUREDI, Z ;
KALAI, G .
MATHEMATICA SCANDINAVICA, 1988, 63 (02) :169-178
[10]  
Hadziivanov N. G., 1976, C R ACAD BULGARE SCI, V29, P1567