Light trapping design for low band-gap polymer solar cells

被引:10
|
作者
Foster, Stephen [1 ]
John, Sajeev [1 ,2 ]
机构
[1] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada
[2] King Abdulaziz Univ, Dept Phys, Jeddah 21413, Saudi Arabia
来源
OPTICS EXPRESS | 2014年 / 22卷 / 05期
基金
美国能源部; 加拿大自然科学与工程研究理事会;
关键词
CIRCUIT CURRENT-DENSITY; ACTIVE LAYER; THIN-FILMS; NANOSTRUCTURES; ENHANCEMENT; IMPROVEMENT; SURFACES;
D O I
10.1364/OE.22.00A465
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell. Finite element method simulations are used to study the effect of varying nanostructure periodicity, height, and shape on active layer absorption. Maintaining a constant active layer thickness of 100nm we observe an enhancement in solar absorption of almost 40% relative to a planar cell. Improvements of this magnitude enable single-junction, low-band-gap cells to achieve power conversion efficiencies of 11.2% and perform competitively with even state-of-the-art tandem cells. Our design is also shown to significantly outperform tandem cells at off-normal angles of incidence. (C) 2014 Optical Society of America
引用
收藏
页码:A465 / A480
页数:16
相关论文
共 50 条
  • [41] Graded band-gap engineering for increased efficiency in CZTS solar cells
    Ferhati, H.
    Djeffal, F.
    OPTICAL MATERIALS, 2018, 76 : 393 - 399
  • [42] Design of band-gap grid structures
    Diaz, AR
    Haddow, AG
    Ma, L
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2005, 29 (06) : 418 - 431
  • [43] Design of band-gap grid structures
    A.R. Diaz
    A.G. Haddow
    L. Ma
    Structural and Multidisciplinary Optimization, 2005, 29 : 418 - 431
  • [44] Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells
    Zhang, Hao
    Zhang, Shaoqing
    Gao, Ke
    Liu, Feng
    Yao, Huifeng
    Yang, Bei
    He, Chang
    Russell, Thomas P.
    Hou, Jianhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (21) : 10416 - 10423
  • [45] A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells
    Luo, Zhenghui
    Li, Guanghao
    Gao, Wei
    Wu, Kailong
    Zhang, Zhi-Guo
    Qiu, Beibei
    Bin, Haijun
    Xue, Lingwei
    Liu, Feng
    Li, Yongfang
    Yang, Chuluo
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (16) : 6874 - 6881
  • [46] Recent progress in the stabilization of low band-gap black-phase iodide perovskite solar cells
    Mittal, Mona
    Garg, Rahul
    Jana, Atanu
    DALTON TRANSACTIONS, 2023, 52 (34) : 11750 - 11767
  • [47] Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer
    Bag, Santanu
    Patel, Romesh J.
    Bunha, Ajaykumar
    Grand, Caroline
    Berrigan, J. Daniel
    Dalton, Matthew J.
    Leever, Benjamin J.
    Reynolds, John R.
    Durstock, Michael F.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (01) : 16 - 19
  • [48] Thickness-dependent internal quantum efficiency of narrow band-gap polymer-based solar cells
    Park, Hoon
    An, Jongdeok
    Song, Jongwoo
    Lee, Myounghee
    Ahn, Hyuntak
    Jahnel, Matthias
    Im, Chan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 143 : 242 - 249
  • [49] A low band-gap copolymer composed of thienyl substituted anthracene and diketopyrrolopyrrole compatible with multiple electron acceptors for high efficiency polymer solar cells
    Jung, Jae Woong
    Jo, Won Ho
    POLYMER CHEMISTRY, 2015, 6 (21) : 4013 - 4019
  • [50] Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells
    Bundgaard, Eva
    Hagemann, Ole
    Manceau, Matthieu
    Jorgensen, Mikkel
    Krebs, Frederik C.
    MACROMOLECULES, 2010, 43 (19) : 8115 - 8120