Light trapping design for low band-gap polymer solar cells

被引:10
|
作者
Foster, Stephen [1 ]
John, Sajeev [1 ,2 ]
机构
[1] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada
[2] King Abdulaziz Univ, Dept Phys, Jeddah 21413, Saudi Arabia
来源
OPTICS EXPRESS | 2014年 / 22卷 / 05期
基金
美国能源部; 加拿大自然科学与工程研究理事会;
关键词
CIRCUIT CURRENT-DENSITY; ACTIVE LAYER; THIN-FILMS; NANOSTRUCTURES; ENHANCEMENT; IMPROVEMENT; SURFACES;
D O I
10.1364/OE.22.00A465
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell. Finite element method simulations are used to study the effect of varying nanostructure periodicity, height, and shape on active layer absorption. Maintaining a constant active layer thickness of 100nm we observe an enhancement in solar absorption of almost 40% relative to a planar cell. Improvements of this magnitude enable single-junction, low-band-gap cells to achieve power conversion efficiencies of 11.2% and perform competitively with even state-of-the-art tandem cells. Our design is also shown to significantly outperform tandem cells at off-normal angles of incidence. (C) 2014 Optical Society of America
引用
收藏
页码:A465 / A480
页数:16
相关论文
共 50 条
  • [1] Cyanothiophene-based low band-gap polymer for organic solar cells
    Clement, J. Arul
    Kim, Heung Gyu
    Sim, Myungsun
    Kang, Boseok
    Cho, Kilwon
    RSC ADVANCES, 2013, 3 (19): : 6799 - 6802
  • [2] DESIGN CONSIDERATIONS FOR LOW BAND-GAP A-SIGE-H ALLOY SOLAR-CELLS
    FORTMANN, CM
    HEGEDUS, SS
    BUCHANAN, WA
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1989, 115 (1-3) : 21 - 23
  • [3] Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells
    Woo, Claire H.
    Beaujuge, Pierre M.
    Holcombe, Thomas W.
    Lee, Olivia P.
    Frechet, Jean M. J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (44) : 15547 - 15549
  • [4] Enhanced efficiency and stability in low band-gap polymer solar cells by introducing nickel acetate as anode interlayer
    Li, Zelin
    Li, Zidong
    Zhao, Xiaoli
    Zhang, Tong
    Wu, Fan
    Yang, Dalei
    Yang, Xiaoniu
    SOLAR ENERGY, 2017, 155 : 1015 - 1020
  • [5] Efficiency limitations in a low band-gap diketopyrrolopyrrole-based polymer solar cell
    Albert-Seifried, Sebastian
    Ko, Doo-Hyun
    Huettner, Sven
    Kanimozhi, Catherine
    Patil, Satish
    Friend, Richard H.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (14) : 6743 - 6752
  • [6] Low band gap polymer materials for organic solar cells
    Krebs, F. C.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) : 953 - 953
  • [7] Low band gap polymer bulk heterojunction solar cells
    Wienk, Martijn M.
    Struijk, Martin P.
    Janssen, Rene A. J.
    CHEMICAL PHYSICS LETTERS, 2006, 422 (4-6) : 488 - 491
  • [8] Wide Band-Gap Polymer Donors Functionalized with Unconventional Carbamate Side Chains for Polymer Solar Cells
    Tang, Jie
    Liao, Chentong
    Duan, Yuwei
    Xu, Xiaopeng
    Deng, Min
    Yu, Liyang
    Li, Ruipeng
    Peng, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (50)
  • [9] Multi junction solar cells using band-gap induced cascaded light absorption
    Sameshima, Toshiyuki
    Nomura, Hitomi
    Yoshidomi, Shinya
    Hasumi, Masahiko
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (05)
  • [10] Impact of Band-gap Graded Intrinsic Layer on Single-junction Band-gap Tailored Solar Cells
    Fatima Rasheed J.
    Suresh Babu V.
    Nanoscience and Nanotechnology - Asia, 2022, 12 (01): : 67 - 74