Mechanistic Modeling Identifies Drug-Uptake History as Predictor of Tumor Drug Resistance and Nano-Carrier-Mediated Response

被引:54
作者
Pascal, Jennifer [1 ]
Ashley, Carlee E. [2 ,4 ]
Wang, Zhihui [1 ]
Brocato, Terisse A. [7 ,8 ]
Butner, Joseph D. [7 ,8 ]
Carnes, Eric C. [2 ,5 ,7 ,8 ]
Koay, Eugene J. [10 ,11 ]
Brinker, C. Jeffrey [2 ,3 ,6 ,7 ,8 ,9 ]
Cristini, Vittorio [1 ,2 ,7 ,8 ]
机构
[1] Univ New Mexico, Hlth Sci Ctr, Dept Pathol, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Hlth Sci Ctr, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Hlth Sci Ctr, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA
[4] Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA
[5] Sandia Natl Labs, Nanobiol Dept, Albuquerque, NM 87185 USA
[6] Sandia Natl Labs, Self Assembled Mat Dept, Albuquerque, NM 87185 USA
[7] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA
[8] Univ New Mexico, Ctr Biomed Engn, Albuquerque, NM 87131 USA
[9] Univ New Mexico, Ctr Microengn Mat, Albuquerque, NM 87131 USA
[10] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
[11] Houston Methodist Res Inst, Dept Nanomed, Houston, TX 77030 USA
基金
美国国家科学基金会;
关键词
drug delivery; mathematical modeling; mesoporous silica nanoparticle; pharmacokinetics-pharmacodynamics model; protocells; SUPPORTED LIPID-BILAYERS; CELLULAR PHARMACODYNAMICS; MATHEMATICAL-MODEL; CANCER-CELLS; DELIVERY; DOXORUBICIN; NANOPARTICLES; CHEMOTHERAPY; SIMULATION; LIPOSOMES;
D O I
10.1021/nn4048974
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A quantitative understanding of the advantages of nanoparticle-based drug delivery vis-a-vis conventional free drug chemotherapy has yet to be established for cancer or other diseases despite numerous investigations. Here, we employ first-principles cell biophysics, drug pharmaco-kinetics, and drug pharmaco-dynamics to model the delivery of doxorubicin (DOX) to hepatocellular carcinoma (HCC) tumor cells and predict the resultant experimental cytotoxicity data. The fundamental, mechanistic hypothesis of our mathematical model is that the integrated history of drug uptake by the cells over time of exposure, which sets the cell death rate parameter, and the uptake rate are the sole determinants of the dose response relationship. A universal solution of the model equations is capable of predicting the entire, nonlinear dose response of the cells to any drug concentration based on just two separate measurements of these cellular parameters. This analysis reveals that nanocarrier-mediated delivery overcomes resistance to the free drug because of improved cellular uptake rates, and that dose response curves to nanocarrier mediated drug delivery are equivalent to those for free-drug, but "shifted to the left;" that is, lower amounts of drug achieve the same cell kill. We then demonstrate the model's general applicability to different tumor and drug types, and cell-exposure time courses by investigating HCC cells exposed to cisplatin and 5-fluorouracil, breast cancer MCF-7 cells exposed to DOX, and pancreatic adenocarcinoma PANC-1 cells exposed to gemcitabine. The model will help in the optimal design of nanocarriers for clinical applications and improve the current, largely empirical understanding of in vivo drug transport and tumor response.
引用
收藏
页码:11174 / 11182
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 2008, MATH MATH ALG VERS 8
[2]   Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers [J].
Ashley, Carlee E. ;
Carnes, Eric C. ;
Epler, Katharine E. ;
Padilla, David P. ;
Phillips, Genevieve K. ;
Castillo, Robert E. ;
Wilkinson, Dan C. ;
Wilkinson, Brian S. ;
Burgard, Cameron A. ;
Kalinich, Robin M. ;
Townson, Jason L. ;
Chackerian, Bryce ;
Willman, Cheryl L. ;
Peabody, David S. ;
Wharton, Walker ;
Brinker, C. Jeffrey .
ACS NANO, 2012, 6 (03) :2174-2188
[3]  
Ashley CE, 2011, NAT MATER, V10, P389, DOI [10.1038/NMAT2992, 10.1038/nmat2992]
[4]   Therapeutic nanoparticles for drug delivery in cancer [J].
Cho, Kwangjae ;
Wang, Xu ;
Nie, Shuming ;
Chen, Zhuo ;
Shin, Dong M. .
CLINICAL CANCER RESEARCH, 2008, 14 (05) :1310-1316
[5]   Impact of Diffusion Barriers to Small Cytotoxic Molecules on the Efficacy of Immunotherapy in Breast Cancer [J].
Das, Hiranmoy ;
Wang, Zhihui ;
Niazi, M. Khalid Khan ;
Aggarwal, Reeva ;
Lu, Jingwei ;
Kanji, Suman ;
Das, Manjusri ;
Joseph, Matthew ;
Gurcan, Metin ;
Cristini, Vittorio .
PLOS ONE, 2013, 8 (04)
[6]   Nanoparticle therapeutics: an emerging treatment modality for cancer [J].
Davis, Mark E. ;
Chen, Zhuo ;
Shin, Dong M. .
NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (09) :771-782
[7]   A mathematical model for comparison of bolus injection, continuous infusion, and liposomal delivery of doxorubicin to tumor cells [J].
El-Kareh, AW ;
Secomb, TW .
NEOPLASIA, 2000, 2 (04) :325-338
[8]   Two-mechanism peak concentration model for cellular pharmacodynamics of doxorubicin [J].
El-Kareh, AW ;
Secomb, TW .
NEOPLASIA, 2005, 7 (07) :705-713
[9]   A mathematical model for cisplatin cellular pharmacodynamics [J].
El-Kareh, AW ;
Secomb, TW .
NEOPLASIA, 2003, 5 (02) :161-169
[10]   Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes [J].
Eliaz, RE ;
Nir, S ;
Marty, C ;
Szoka, FC .
CANCER RESEARCH, 2004, 64 (02) :711-718