Controlled Fabrication of Hierarchically Structured Nitrogen-Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst

被引:90
作者
Zhao, Xianglong [1 ,2 ]
Li, Feng [2 ]
Wang, Ruining [3 ]
Seo, Jeong-Min [2 ]
Choi, Hyun-Jung [2 ]
Jung, Sun-Min [2 ]
Mahmood, Javeed [2 ]
Jeon, In-Yup [2 ]
Baek, Jong-Beom [2 ]
机构
[1] Chinese Acad Sci, Key Lab Mat Phys, Anhui Key Lab Nanomat & Nanotechnol, Inst Solid State Phys, Hefei 230031, Peoples R China
[2] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ctr Dimens Controllable Organ Frameworks, UNIST 50, Ulsan 44919, South Korea
[3] Hebei Univ, Hebei Key Lab Opt Elect Informat & Mat, Coll Phys Sci & Technol, Baoding 071002, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
anodic aluminum oxide; carbon nanotubes; chemical vapor deposition; oxygen evolution reaction; oxygen reduction reaction; CHEMICAL-VAPOR-DEPOSITION; REDUCTION REACTION; CO3O4; NANOCRYSTALS; AIR BATTERIES; FUEL-CELLS; GRAPHENE; EVOLUTION; CATALYST; NANOCONTAINERS; PERFORMANCE;
D O I
10.1002/adfm.201605717
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hierarchically structured nitrogen-doped carbon nanotube (NCNT) composites, with copper (Cu) nanoparticles embedded uniformly within the nanotube walls and cobalt oxide (CoxOy) nanoparticles decorated on the nanotube surfaces, are fabricated via a combinational process. This process involves the growth of Cu embedded CNTs by low- and high-temperature chemical vapor deposition, post-treatment with ammonia for nitrogen doping of these CNTs, precipitation-assisted separation of NCNTs from cobalt nitrate aqueous solution, and finally thermal annealing for CoxOy decoration. Theoretical calculations show that interaction of Cu nanoparticles with CNT walls can effectively decrease the work function of CNT surfaces and improve adsorption of hydroxyl ions onto the CNT surfaces. Thus, the activities of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are significantly enhanced. Because of this benefit, further nitrogen doping, and synergistic coupling between CoxOy and NCNTs, Cu@NCNT/CoxOy composites exhibit ORR activity comparable to that of commercial Pt/C catalysts and high OER activity (outperforming that of IrO2 catalysts). More importantly, the composites display superior long-term stability for both ORR and OER. This simple but general synthesis protocol can be extended to design and synthesis of other metal/metal oxide systems for fabrication of high-performance carbon-based electrocatalysts with multifunctional catalytic activities.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Sacrificial Templating Fabrication of Hierarchically Porous Nitrogen-Doped Carbon Nanosheets as Superior Oxygen Reduction Electrocatalysts
    Huang, Tao
    Yang, Chongqing
    Wang, Xinjing
    Qiu, Feng
    Jing, Fan
    Jiang, Jianzhong
    Liu, Ruili
    Han, Sheng
    Wu, Dongqing
    CHEMNANOMAT, 2017, 3 (02): : 130 - 134
  • [22] Nitrogen-doped carbon nanotubes synthesized with carbon nanotubes as catalyst
    Wang, Can
    Huang, Zhenghong
    Zhan, Liang
    Wang, Yanli
    Qiao, Wenming
    Liang, Xiaoyi
    Ling, Licheng
    DIAMOND AND RELATED MATERIALS, 2011, 20 (10) : 1353 - 1356
  • [23] Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions
    Ding, Jieting
    Ji, Shan
    Wang, Hui
    Linkov, Vladimir
    Wang, Rongfang
    JOURNAL OF POWER SOURCES, 2019, 423 : 1 - 8
  • [24] Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes as High-Performance Bifunctional Oxygen Catalysts
    Hao, Yongchao
    Lu, Zhiyi
    Zhang, Guoxin
    Chang, Zheng
    Luo, Liang
    Sun, Xiaoming
    ENERGY TECHNOLOGY, 2017, 5 (08) : 1265 - 1271
  • [25] Co-N-doped hierarchically ordered macro/mesoporous carbon as bifunctional electrocatalyst toward oxygen reduction/evolution reactions
    Meng, Zihan
    Chen, Neng
    Cai, Shichang
    Wang, Rui
    Guo, Weibin
    Tang, Haolin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (04) : 6250 - 6261
  • [26] Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes
    Sharifi, Tiva
    Hu, Guangzhi
    Jia, Xueen
    Wagberg, Thomas
    ACS NANO, 2012, 6 (10) : 8904 - 8912
  • [27] Highly active CoP embedded in hollow nitrogen-doped carbon as an efficient bifunctional electrocatalyst for rechargeable zinc-air batteries
    Gan, Lang
    Liu, Jincheng
    Han, Linhu
    Li, Jiawang
    Zhao, Jing
    Chen, Kang
    Jiang, Dapeng
    Ren, Yanjie
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 1391 - 1399
  • [28] Mesoporous Spinel Nanofibers and Nitrogen-doped Carbon Nanotubes as High-Performance Electrocatalyst for Oxygen Reduction in Alkaline and Neutral Media
    Wang, Haijun
    Wang, Juan
    Zhong, Qin
    Zhang, Guangyao
    Bu, Yunfei
    ENERGY TECHNOLOGY, 2017, 5 (02) : 283 - 292
  • [29] Nitrogen-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium
    Yang, Mei
    Yan, Duangguang
    Chen, Hongbiao
    Gao, Yong
    Li, Huaming
    JOURNAL OF POWER SOURCES, 2015, 279 : 28 - 35
  • [30] Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction
    Dorjgotov, Altansukh
    Ok, Jinhee
    Jeon, YuKwon
    Yoon, Seong-Ho
    Shul, Yong Gun
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (04) : 387 - 397