Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer

被引:0
|
作者
Sanchez-Yamagishi, Javier D. [1 ]
Luo, Jason Y. [1 ]
Young, Andrea F. [2 ]
Hunt, Benjamin M. [3 ]
Watanabe, Kenji [4 ]
Taniguchi, Takashi [4 ]
Ashoori, Raymond C. [1 ]
Jarillo-Herrero, Pablo [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[4] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan
基金
美国国家科学基金会;
关键词
TOPOLOGICAL INSULATORS; BERRYS PHASE; SPIN; FERMIONS;
D O I
10.1038/NNANO.2016.214
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics(1-4). Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states(3-7), the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states(8,9). Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics(10-13).
引用
收藏
页码:118 / 122
页数:5
相关论文
共 50 条
  • [1] Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer
    Sanchez-Yamagishi J.D.
    Luo J.Y.
    Young A.F.
    Hunt B.M.
    Watanabe K.
    Taniguchi T.
    Ashoori R.C.
    Jarillo-Herrero P.
    Nature Nanotechnology, 2017, 12 (2) : 118 - 122
  • [2] Electron-hole asymmetric integer and fractional quantum Hall effect in bilayer graphene
    Kou, A.
    Feldman, B. E.
    Levin, A. J.
    Halperin, B. I.
    Watanabe, K.
    Taniguchi, T.
    Yacoby, A.
    SCIENCE, 2014, 345 (6192) : 55 - 57
  • [3] Electron-hole states in the fractional quantum Hall regime probed by photoluminescence
    Nomura, Shintaro
    Yamaguchi, Masumi
    Akazaki, Tatsushi
    Tamura, Hiroyuki
    Takayanagi, Hideaki
    Hirayama, Yoshiro
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2): : 292 - 295
  • [4] Electron-hole correlation in fractional quantum Hall systems
    Beran, P
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (04) : 801 - 807
  • [5] Edge states of bilayer graphene in the quantum Hall regime
    Mazo, V.
    Shimshoni, E.
    Fertig, H. A.
    PHYSICAL REVIEW B, 2011, 84 (04)
  • [6] Electron-hole hybridization in bilayer graphene
    Siqi Wang
    Mervin Zhao
    Changjian Zhang
    Sui Yang
    Yuan Wang
    Kenji Watanabe
    Takashi Taniguchi
    James Hone
    Xiang Zhang
    NationalScienceReview, 2020, 7 (02) : 248 - 253
  • [7] Electron-hole hybridization in bilayer graphene
    Wang, Siqi
    Zhao, Mervin
    Zhang, Changjian
    Yang, Sui
    Wang, Yuan
    Watanabe, Kenji
    Taniguchi, Takashi
    Hone, James
    Zhang, Xiang
    NATIONAL SCIENCE REVIEW, 2020, 7 (02) : 248 - 253
  • [8] Unconventional fractional quantum Hall effect in bilayer graphene
    Janusz Edward Jacak
    Scientific Reports, 7
  • [9] Unconventional fractional quantum Hall effect in bilayer graphene
    Jacak, Janusz Edward
    SCIENTIFIC REPORTS, 2017, 7
  • [10] FRACTIONAL QUANTUM HALL-EFFECT IN A 2-DIMENSIONAL ELECTRON-HOLE FLUID
    MACDONALD, AH
    REZAYI, EH
    PHYSICAL REVIEW B, 1990, 42 (05): : 3224 - 3227