Perturbation analysis for the eigenvalue problem of a formal product of matrices

被引:27
作者
Benner, P
Mehrmann, V
Xu, HG
机构
[1] Univ Bremen, Zentrum Technomath, Fachbereich Math & Informat 3, D-28334 Bremen, Germany
[2] Tech Univ Berlin, Fac Math & Nat Wissensch 2, D-10623 Berlin, Germany
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
perturbation theory; eigenvalue problem; formal matrix products; periodic QZ algorithm; Hamiltonian matrix; skew-Hamiltonian matrix; deflating subspace;
D O I
10.1023/A:1021966001542
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the perturbation theory for the eigenvalue problem of a formal matrix product A(1)(s1)...A(p)(s p), where all A(k) and square and s(k) is an element of {-1, 1}. We generalize the classical perturbation results for matrices and matrix pencils to perturbation results for generalized deflating subspaces and eigenvalues of such formal matrix products. As an application we then extend the structured perturbation theory for the eigenvalue problem of Hamiltonian matrices to Hamiltonian/skew-Hamiltonian pencils.
引用
收藏
页码:1 / 43
页数:43
相关论文
共 36 条
[1]   A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils [J].
Benner, P ;
Mehrmann, V ;
Xu, HG .
NUMERISCHE MATHEMATIK, 1998, 78 (03) :329-358
[2]   Evaluating products of matrix pencils and collapsing matrix products [J].
Benner, P ;
Byers, R .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2001, 8 (6-7) :357-380
[3]  
Benner P, 1999, PROG SYST C, V25, P203
[4]   A new method for computing the stable invariant subspace of a real Hamiltonian matrix [J].
Benner, P ;
Mehrmann, V ;
Xu, HG .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :17-43
[5]  
BENNER P., 1999, ELECTRON T NUMER ANA, V8, P115
[6]  
BENNER P, 1999, SFB3939915 TU CHEMN
[7]   LYAPUNOV AND RICCATI-EQUATIONS - PERIODIC INERTIA THEOREMS [J].
BITTANTI, S ;
COLANERI, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (07) :659-661
[8]  
Bittanti S, 1991, RICCATI EQUATION, P127
[9]  
BOJANCZYK A, 1992, P SOC PHOTO-OPT INS, V1770, P31, DOI 10.1117/12.130915
[10]   Where is the nearest non-regular pencil? [J].
Byers, R ;
He, CY ;
Mehrmann, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) :81-105