A Multimodal Deep Neural Network for Human Breast Cancer Prognosis Prediction by Integrating Multi-Dimensional Data

被引:209
作者
Sun, Dongdong [1 ]
Wang, Minghui [1 ,2 ]
Li, Ao [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, Ctr Biomed Engn, Hefei 230027, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer prognosis prediction; multimodal deep neural network; multi-dimensional data; FEATURE-SELECTION; INFORMATION; FUSION;
D O I
10.1109/TCBB.2018.2806438
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Breast cancer is a highly aggressive type of cancer with very low median survival. Accurate prognosis prediction of breast cancer can spare a significant number of patients from receiving unnecessary adjuvant systemic treatment and its related expensive medical costs. Previous work relies mostly on selected gene expression data to create a predictive model. The emergence of deep learning methods and multi-dimensional data offers opportunities for more comprehensive analysis of the molecular characteristics of breast cancer and therefore can improve diagnosis, treatment, and prevention. In this study, we propose a Multimodal Deep Neural Network by integrating Multi-dimensional Data (MDNNMD) for the prognosis prediction of breast cancer. The novelty of the method lies in the design of our method's architecture and the fusion of multi-dimensional data. The comprehensive performance evaluation results show that the proposed method achieves a better performance than the prediction methods with single-dimensional data and other existing approaches. The source code implemented by TensorFlow 1.0 deep learning library can be downloaded from the Github: https://github.com/USTC-Hllab/MDNNMD.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 55 条
[41]  
Sohn K., 2014, P 27 INT C NEUR INF, VVolume 2, P2141
[42]  
Srivastava N, 2012, P 26 ANN C NEUR INF, P2222
[43]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
[44]   Predicting prognosis in patients with advanced cancer [J].
Stone, P. C. ;
Lund, S. .
ANNALS OF ONCOLOGY, 2007, 18 (06) :971-976
[45]   Improved breast cancer prognosis through the combination of clinical and genetic markers [J].
Sun, Yijun ;
Goodison, Steve ;
Li, Jian ;
Liu, Li ;
Farmerie, William .
BIOINFORMATICS, 2007, 23 (01) :30-37
[46]  
Tomczak Katarzyna, 2015, Contemp Oncol (Pozn), V19, pA68, DOI 10.5114/wo.2014.47136
[47]   Missing value estimation methods for DNA microarrays [J].
Troyanskaya, O ;
Cantor, M ;
Sherlock, G ;
Brown, P ;
Hastie, T ;
Tibshirani, R ;
Botstein, D ;
Altman, RB .
BIOINFORMATICS, 2001, 17 (06) :520-525
[48]   A gene-expression signature as a predictor of survival in breast cancer. [J].
van de Vijver, MJ ;
He, YD ;
van 't Veer, LJ ;
Dai, H ;
Hart, AAM ;
Voskuil, DW ;
Schreiber, GJ ;
Peterse, JL ;
Roberts, C ;
Marton, MJ ;
Parrish, M ;
Atsma, D ;
Witteveen, A ;
Glas, A ;
Delahaye, L ;
van der Velde, T ;
Bartelink, H ;
Rodenhuis, S ;
Rutgers, ET ;
Friend, SH ;
Bernards, R .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 347 (25) :1999-2009
[49]   Multimodal biometric authentication based on score level fusion using support vector machine [J].
Wang, F. ;
Han, J. .
OPTO-ELECTRONICS REVIEW, 2009, 17 (01) :59-64
[50]   Gene-expression pro-files to predict distant metastasis of lymph-node-negative primary breast cancer [J].
Wang, YX ;
Klijn, JGM ;
Zhang, Y ;
Sieuwerts, A ;
Look, MP ;
Yang, F ;
Talantov, D ;
Timmermans, M ;
Meijer-van Gelder, ME ;
Yu, J ;
Jatkoe, T ;
Berns, EMJJ ;
Atkins, D ;
Foekens, JA .
LANCET, 2005, 365 (9460) :671-679