TIME-PERIODIC SOLUTIONS OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM

被引:11
作者
Duan, Renjun [1 ]
Liu, Shuangqian [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Vlasov-Poisson-Fokker-Planck system; time-periodic solution; energy method; exponential time-decay; GLOBAL CLASSICAL-SOLUTIONS; BOLTZMANN-EQUATION; EQUILIBRIUM; EXISTENCE; TREND; BEHAVIOR;
D O I
10.1016/S0252-9602(15)30026-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note it is shown that the Vlasov-Poisson-Fokker-Planck system in the three-dimensional whole space driven by a time-periodic background profile near a positive constant state admits a time-periodic small-amplitude solution with the same period. The proof follows by the Serrin's method on the basis of the exponential time-decay property of the linearized system in the case of the constant background profile.
引用
收藏
页码:876 / 886
页数:11
相关论文
共 32 条
[1]   EXISTENCE AND UNIQUENESS OF A GLOBAL SMOOTH SOLUTION FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM IN 3 DIMENSIONS [J].
BOUCHUT, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) :239-258
[2]   SMOOTHING EFFECT FOR THE NONLINEAR VLASOV-POISSON-FOKKER-PLANCK SYSTEM [J].
BOUCHUT, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :225-238
[3]   Hypoelliptic regularity in kinetic equations [J].
Bouchut, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (11) :1135-1159
[4]  
Bouchut F., 1995, Differential Integ. Equations, V8, P487
[5]  
Carpio A, 1998, MATH METHOD APPL SCI, V21, P985, DOI 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO
[6]  
2-B
[7]   Asymptotic behaviour and self-similarity for the three dimensional Vlasov-Poisson-Fokker-Planck system [J].
Carrillo, JA ;
Soler, J ;
Vazquez, JL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (01) :99-132
[8]   ON THE INITIAL-VALUE PROBLEM FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM WITH INITIAL DATA IN L(P) SPACES [J].
CARRILLO, JA ;
SOLER, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1995, 18 (10) :825-839
[9]   GLOBAL CLASSICAL SOLUTIONS CLOSE TO EQUILIBRIUM TO THE VLASOV-FOKKER-PLANCK-EULER SYSTEM [J].
Carrillo, Jose A. ;
Duan, Renjun ;
Moussa, Ayman .
KINETIC AND RELATED MODELS, 2011, 4 (01) :227-258
[10]   On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation [J].
Desvillettes, L ;
Villani, C .
INVENTIONES MATHEMATICAE, 2005, 159 (02) :245-316