Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons

被引:46
作者
Flores, Thomas [1 ]
Lei, Xin [2 ]
Huang, Tiffany [2 ]
Lorach, Henri [3 ,4 ]
Dalal, Roopa [3 ]
Galambos, Ludwig [2 ]
Kamins, Theodore [2 ]
Mathieson, Keith [5 ]
Palanker, Daniel [3 ,4 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Ophthalmol, Stanford, CA 94305 USA
[4] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA
[5] Univ Strathclyde, Inst Photon, Glasgow, Lanark, Scotland
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
retinal degeneration; retinal prosthesis; pillar electrodes; electrical stimulation; neural stimulation; three-dimensional electrodes; RETINAL PROSTHESIS; PHOTOVOLTAIC RESTORATION; GANGLION-CELLS; IN-VIVO; STIMULATION; PERFORMANCE; ACTIVATION; FREQUENCY; SIGHT;
D O I
10.1088/1741-2552/aaac39
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. High-resolution prosthetic vision requires dense stimulating arrays with small electrodes. However, such miniaturization reduces electrode capacitance and penetration of electric field into tissue. We evaluate potential solutions to these problems with subretinal implants based on utilization of pillar electrodes. Approach. To study integration of three-dimensional (3D) implants with retinal tissue, we fabricated arrays with varying pillar diameter, pitch, and height, and implanted beneath the degenerate retina in rats (Royal College of Surgeons, RCS). Tissue integration was evaluated six weeks post-op using histology and whole-mount confocal fluorescence imaging. The electric field generated by various electrode configurations was calculated in COMSOL, and stimulation thresholds assessed using a model of network-mediated retinal response. Main results. Retinal tissue migrated into the space between pillars with no visible gliosis in 90% of implanted arrays. Pillars with 10 mu m height reached the middle of the inner nuclear layer (INL), while 22 mu m pillars reached the upper portion of the INL. Electroplated pillars with dome-shaped caps increase the active electrode surface area. Selective deposition of sputtered iridium oxide onto the cap ensures localization of the current injection to the pillar top, obviating the need to insulate the pillar sidewall. According to computational model, pillars having a cathodic return electrode above the INL and active anodic ring electrode at the surface of the implant would enable six times lower stimulation threshold, compared to planar arrays with circumferential return, but suffer from greater cross-talk between the neighboring pixels. Significance. 3D electrodes in subretinal prostheses help reduce electrode-tissue separation and decrease stimulation thresholds to enable smaller pixels, and thereby improve visual acuity of prosthetic vision.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Factors Affecting Perceptual Threshold in Argus II Retinal Prosthesis Subjects [J].
Ahuja, A. K. ;
Yeoh, J. ;
Dorn, J. D. ;
Caspi, A. ;
Wuyyuru, V. ;
McMahon, M. J. ;
Humayun, M. S. ;
Greenberg, R. J. ;
daCruz, L. .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2013, 2 (04)
[2]   First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis [J].
Ayton, Lauren N. ;
Blamey, Peter J. ;
Guymer, Robyn H. ;
Luu, Chi D. ;
Nayagam, David A. X. ;
Sinclair, Nicholas C. ;
Shivdasani, Mohit N. ;
Yeoh, Jonathan ;
McCombe, Mark F. ;
Briggs, Robert J. ;
Opie, Nicholas L. ;
Villalobos, Joel ;
Dimitrov, Peter N. ;
Varsamidis, Mary ;
Petoe, Matthew A. ;
McCarthy, Chris D. ;
Walker, Janine G. ;
Barnes, Nick ;
Burkitt, Anthony N. ;
Williams, Chris E. ;
Shepherd, Robert K. ;
Allen, Penelope J. .
PLOS ONE, 2014, 9 (12)
[3]   Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and in vivo biocompatibility [J].
Bendali, Amel ;
Rousseau, Lionel ;
Lissorgues, Gaelle ;
Scorsone, Emmanuel ;
Djilas, Milan ;
Degardin, Julie ;
Dubus, Elisabeth ;
Fouquet, Stephane ;
Benosman, Ryad ;
Bergonzo, Philippe ;
Sahel, Jose-Alain ;
Picaud, Serge .
BIOMATERIALS, 2015, 67 :73-83
[4]   Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance [J].
Boinagrov, David ;
Lei, Xin ;
Goetz, Georges ;
Kamins, Theodore I. ;
Mathieson, Keith ;
Galambos, Ludwig ;
Harris, James S., Jr. ;
Palanker, Daniel .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2016, 10 (01) :85-97
[5]   Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes [J].
Boinagrov, David ;
Pangratz-Fuehrer, Susanne ;
Goetz, Georges ;
Palanker, Daniel .
JOURNAL OF NEURAL ENGINEERING, 2014, 11 (02)
[6]   Strength-Duration Relationship for Extracellular Neural Stimulation: Numerical and Analytical Models [J].
Boinagrov, David ;
Loudin, Jim ;
Palanker, Daniel .
JOURNAL OF NEUROPHYSIOLOGY, 2010, 104 (04) :2236-2248
[7]   Effect of shape and coating of a subretinal prosthesis on its integration with the retina [J].
Butterwick, A. ;
Huie, P. ;
Jones, B. W. ;
Marc, R. E. ;
Marmor, M. ;
Palanker, D. .
EXPERIMENTAL EYE RESEARCH, 2009, 88 (01) :22-29
[8]  
Cogan S. F., 2004, ENG MED BIOL SOC 200
[9]   Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation [J].
Djilas, M. ;
Oles, C. ;
Lorach, H. ;
Bendali, A. ;
Degardin, J. ;
Dubus, E. ;
Lissorgues-Bazin, G. ;
Rousseau, L. ;
Benosman, R. ;
Ieng, S-H ;
Joucla, S. ;
Yvert, B. ;
Bergonzo, P. ;
Sahel, J. ;
Picaud, S. .
JOURNAL OF NEURAL ENGINEERING, 2011, 8 (04)
[10]   Optimization of return electrodes in neurostimulating arrays [J].
Flores, Thomas ;
Goetz, Georges ;
Lei, Xin ;
Palanker, Daniel .
JOURNAL OF NEURAL ENGINEERING, 2016, 13 (03)