Understanding dispersive charge-transport in crystalline organic-semiconductors

被引:3
作者
Yavuz, Ilhan [1 ]
Lopez, Steven A. [2 ]
机构
[1] Marmara Univ, Dept Phys, TR-34722 Istanbul, Turkey
[2] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
关键词
THIN-FILM TRANSISTORS; MOBILITY; DESIGN; HOLE;
D O I
10.1039/c6cp06431k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of short-range order and dispersivity on charge-transport for organic crystalline semiconductors are important and unresolved questions. This exploration is the first to discern the role of short-range order on charge-transport for crystalline organic semiconductors. A multimode computational approach (including Molecular Dynamics and kinetic Monte Carlo simulations) is employed to understand the hole mobility dispersivity of crystalline organic semiconductors. Crystalline organic solids feature a mesoscale region where dispersive charge-transport dominates; our calculations show a clear transition of charge-mobility from non-dispersive to dispersive. An empirical relationship between the dispersive and non-dispersive transport transition region and ideal simulation box thickness is put forth. The dispersive to non-dispersive transition region occurs when energetic disorder approaches 72 meV. Non-dispersive transport is observed for simulation box sizes greater than 3.7 nm, which corresponds to approximately 12 pi-stacked layers in typical p-stacked organic solids. A qualitative relationship is deduced between the variability of measured dispersive hole and variability of computed dispersive hole mobilities and system size. This relationship will guide future charge-transport investigations of condensed-phase organic systems.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 54 条
[1]   CHARGE TRANSPORT IN DISORDERED ORGANIC PHOTOCONDUCTORS - A MONTE-CARLO SIMULATION STUDY [J].
BASSLER, H .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1993, 175 (01) :15-56
[2]   Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies [J].
Baumeier, Bjoern ;
Kirkpatrick, James ;
Andrienko, Denis .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (36) :11103-11113
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   NONDISPERSIVE-TO-DISPERSIVE CHARGE-TRANSPORT TRANSITION IN DISORDERED MOLECULAR-SOLIDS [J].
BORSENBERGER, PM ;
PAUTMEIER, LT ;
BASSLER, H .
PHYSICAL REVIEW B, 1992, 46 (19) :12145-12153
[5]   Molecular Understanding of Organic Solar Cells: The Challenges [J].
Bredas, Jean-Luc ;
Norton, Joseph E. ;
Cornil, Jerome ;
Coropceanu, Veaceslav .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1691-1699
[6]   Organic semiconductors:: A theoretical characterization of the basic parameters governing charge transport [J].
Brédas, JL ;
Calbert, JP ;
da Silva, DA ;
Cornil, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5804-5809
[7]   Scaling down of organic thin film transistors: short channel effects and channel length-dependent field effect mobility [J].
Chen, Yi ;
Shih, Ishiang .
JOURNAL OF MATERIALS SCIENCE, 2009, 44 (01) :280-284
[8]   Charge transport in organic semiconductors [J].
Coropceanu, Veaceslav ;
Cornil, Jerome ;
da Silva Filho, Demetrio A. ;
Olivier, Yoann ;
Silbey, Robert ;
Bredas, Jean-Luc .
CHEMICAL REVIEWS, 2007, 107 (04) :926-952
[9]   Influence of grain sizes on the mobility of organic thin-film transistors [J].
Di Carlo, A ;
Piacenza, F ;
Bolognesi, A ;
Stadlober, B ;
Maresch, H .
APPLIED PHYSICS LETTERS, 2005, 86 (26) :1-3
[10]   25th Anniversary Article: Key Points for High-Mobility Organic Field-Effect Transistors [J].
Dong, Huanli ;
Fu, Xiaolong ;
Liu, Jie ;
Wang, Zongrui ;
Hu, Wenping .
ADVANCED MATERIALS, 2013, 25 (43) :6158-6182