Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials

被引:400
作者
Sounas, Dimitrios L. [1 ]
Caloz, Christophe [2 ]
Alu, Andrea [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Ecole Polytech, Polygrames Res Ctr, Montreal, PQ H3T 1J4, Canada
关键词
PHOTONIC CRYSTALS; FANO RESONANCE; OPTICAL DIODE; TRANSITIONS; LIGHT;
D O I
10.1038/ncomms3407
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breaking time-reversal symmetry enables the realization of non-reciprocal devices, such as isolators and circulators, of fundamental importance in microwave and photonic communication systems. This effect is almost exclusively achieved today through magneto-optical phenomena, which are incompatible with integrated technology because of the required large magnetic bias. However, this is not the only option to break reciprocity. The Onsager-Casimir principle states that any odd vector under time reversal, such as electric current and linear momentum, can also produce a non-reciprocal response. These recently analysed alternatives typically work over a limited portion of the electromagnetic spectrum and/or are often characterized by weak effects, requiring large volumes of operation. Here we show that these limitations may be overcome by angular momentum-biased metamaterials, in which a properly tailored spatiotemporal modulation is azimuthally applied to subwavelength Fano-resonant inclusions, producing largely enhanced non-reciprocal response at the subwavelength scale, in principle applicable from radio to optical frequencies.
引用
收藏
页数:7
相关论文
共 28 条
[1]   ON ONSAGER PRINCIPLE OF MICROSCOPIC REVERSIBILITY [J].
CASIMIR, HBG .
REVIEWS OF MODERN PHYSICS, 1945, 17 (2-3) :343-350
[2]   Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation [J].
Chin, Jessie Yao ;
Steinle, Tobias ;
Wehlus, Thomas ;
Dregely, Daniel ;
Weiss, Thomas ;
Belotelov, Vladimir I. ;
Stritzker, Bernd ;
Giessen, Harald .
NATURE COMMUNICATIONS, 2013, 4
[3]   Simple derivation of four-level permittivity relations for magneto-optical applications [J].
Dionne, GF .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[4]   An All-Silicon Passive Optical Diode [J].
Fan, Li ;
Wang, Jian ;
Varghese, Leo T. ;
Shen, Hao ;
Niu, Ben ;
Xuan, Yi ;
Weiner, Andrew M. ;
Qi, Minghao .
SCIENCE, 2012, 335 (6067) :447-450
[5]   Photonic Aharonov-Bohm Effect Based on Dynamic Modulation [J].
Fang, Kejie ;
Yu, Zongfu ;
Fan, Shanhui .
PHYSICAL REVIEW LETTERS, 2012, 108 (15)
[6]   All-optical diode in a periodically poled lithium niobate waveguide [J].
Gallo, K ;
Assanto, G ;
Parameswaran, KR ;
Fejer, MM .
APPLIED PHYSICS LETTERS, 2001, 79 (03) :314-316
[7]  
Kamal A, 2011, NAT PHYS, V7, P311, DOI [10.1038/nphys1893, 10.1038/NPHYS1893]
[8]  
Kang MS, 2011, NAT PHOTONICS, V5, P549, DOI [10.1038/NPHOTON.2011.180, 10.1038/nphoton.2011.180]
[9]   Magnetless Nonreciprocal Metamaterial (MNM) Technology: Application to Microwave Components [J].
Kodera, Toshiro ;
Sounas, Dimitrios L. ;
Caloz, Christophe .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (03) :1030-1042
[10]   Nonreciprocal Magnetless CRLH Leaky-Wave Antenna Based on a Ring Metamaterial Structure [J].
Kodera, Toshiro ;
Sounas, Dimitrios L. ;
Caloz, Christophe .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 :1551-1554