TrajFormer: Efficient Trajectory Classification with Transformers

被引:21
作者
Liang, Yuxuan [1 ]
Ouyang, Kun [1 ]
Wang, Yiwei [1 ]
Liu, Xu [1 ]
Chen, Hongyang [2 ]
Zhang, Junbo [3 ]
Zheng, Yu [3 ]
Zimmermann, Roger [1 ]
机构
[1] Natl Univ Singapore, Singapore, Singapore
[2] Zhejiang Lab, Hangzhou, Peoples R China
[3] JD Technol, JD Intelligent Cities Res & JD iCity, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022 | 2022年
基金
中国国家自然科学基金;
关键词
Trajectory classification; urban computing; transformer;
D O I
10.1145/3511808.3557481
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Transformers have been an efficient alternative to recurrent neural networks in many sequential learning tasks. When adapting transformers to modeling trajectories, we encounter two major issues. First, being originally designed for language modeling, transformers assume regular intervals between input tokens, which contradicts the irregularity of trajectories. Second, transformers often suffer high computational costs, especially for long trajectories. In this paper, we address these challenges by presenting a novel transformer architecture entitled TrajFormer. Our model first generates continuous point embeddings by jointly considering the input features and the information of spatio-temporal intervals, and then adopts a squeeze function to speed up the representation learning. Moreover, we introduce an auxiliary loss to ease the training of transformers using the supervision signals provided by all output tokens. Extensive experiments verify that our TrajFormer achieves a preferable speed-accuracy balance compared to existing approaches.
引用
收藏
页码:1229 / 1237
页数:9
相关论文
共 50 条
[21]   TVFormer: Trajectory-guided Visual Quality Assessment on 360° Images with Transformers [J].
Yang, Li ;
Xu, Mai ;
Liu, Tie ;
Huo, Liangyu ;
Gao, Xinbo .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022,
[22]   CDR-based Trajectory Reconstruction of Mobile Network Data Using Transformers [J].
Bollverk, Oliver ;
Hadachi, Amnir .
2023 8TH INTERNATIONAL CONFERENCE ON MODELS AND TECHNOLOGIES FOR INTELLIGENT TRANSPORTATION SYSTEMS, MT-ITS, 2023,
[23]   Preformer: Simple and Efficient Design for Precipitation Nowcasting With Transformers [J].
Jin, Qizhao ;
Zhang, Xinbang ;
Xiao, Xinyu ;
Wang, Ying ;
Xiang, Shiming ;
Pan, Chunhong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 :1-5
[24]   ViTA: A Highly Efficient Dataflow and Architecture for Vision Transformers [J].
Chen, Chunyun ;
Li, Lantian ;
Aly, Mohamed M. Sabry .
2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
[25]   Knowledge Distillation for Efficient Instance Semantic Segmentation with Transformers [J].
Li, Maohui ;
Halstead, Michael ;
McCool, Chris .
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2024, :5432-5439
[26]   State space models meet transformers for hyperspectral image classification [J].
Shi, Xuefei ;
Zhang, Yisi ;
Liu, Kecheng ;
Wen, Zhaokun ;
Wang, Wenxuan ;
Zhang, Tianxiang ;
Li, Jiangyun .
SIGNAL PROCESSING, 2025, 226
[27]   A Trajectory Classification Model Using Grammar Parsing [J].
Bao, Lei .
IEEE ACCESS, 2020, 8 :218416-218423
[28]   Spatio-Temporal GRU for Trajectory Classification [J].
Liu, Hong-Bin ;
Wu, Hao ;
Sun, Weiwei ;
Lee, Ickjai .
2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, :1228-1233
[29]   Multi-Label Retinal Disease Classification Using Transformers [J].
Rodriguez, Manuel Alejandro ;
AlMarzouqi, Hasan ;
Liatsis, Panos .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (06) :2739-2750
[30]   A Deep Learning Streaming Methodology for Trajectory Classification [J].
Kontopoulos, Ioannis ;
Makris, Antonios ;
Tserpes, Konstantinos .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (04)