Online identification of the ARX model expansion on Laguerre orthonormal bases with filters on model input and output

被引:34
作者
Bouzrara, Kais [1 ]
Garna, Tarek [1 ]
Ragot, Jose [2 ]
Messaoud, Hassani [1 ]
机构
[1] Univ Monastir, Natl Sch Engineers Monastir, Lab Automat Signal & Image Proc, Monastir 5019, Tunisia
[2] CNRS, UMR 7039, Ctr Res Automat Nancy, F-54516 Vandoeuvre Les Nancy, France
关键词
ARX-Laguerre model; Laguerre bases; reduced parametric complexity; optimisation; sliding window; online identification; TIME-SCALE;
D O I
10.1080/00207179.2012.732710
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes a new representation of the ARX models on independent and orthonormal Laguerre bases by filtering the process input and output using Laguerre orthonormal functions. The resulting model, entitled ARX-Laguerre model, ensures the parameter number reduction with a recursive and easy representation. However, this reduction is still subject to an optimal choice of the Laguerre poles defining both Laguerre bases. Therefore, we propose an analytical solution to optimise the Laguerre poles which depend on Fourier coefficients defining the ARX-Laguerre model, and that are identified using the regularised square error. The identification procedures of the Laguerre poles and Fourier coefficients are combined and carried out on a sliding window to provide an online identification algorithm of the ARX-Laguerre model. The proposed algorithm is tested on numerical simulation and validated on a benchmark system manufactured by Feedback known as Process Trainer PT326.
引用
收藏
页码:369 / 385
页数:17
相关论文
共 13 条
[1]  
[Anonymous], 1999, IEEE T SIGNAL PROCES
[2]  
[Anonymous], 1966, NONLINEAR PROGRAMMIN
[3]  
[Anonymous], 1998, IEEE T AUTOMATIC CON
[4]  
Bazaraa M. S., 2006, NONLINEAR PROGRAMMIN
[5]   AN OPTIMUM TIME-SCALE FOR DISCRETE LAGUERRE NETWORK [J].
FU, Y ;
DUMONT, GA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (06) :934-938
[6]  
Heuberger P.S.C., 2005, Modeling and Identification with Rational Orthogonal Basis Functions
[7]  
Hirama Y., 2011, SICE 2011 - 50th Annual Conference of the Society of Instrument and Control Engineers of Japan, P2955
[8]  
Li PK, 2011, INT J COMPUT APPL T, V41, P34, DOI 10.1504/IJCAT.2011.042229
[9]  
Ljung L., 1987, System Identification: Theory for the User
[10]   A unifying construction of orthonormal bases for system identification [J].
Ninness, B ;
Gustafsson, F .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (04) :515-521