On the elastostatics of thin periodic plates with large deflections

被引:19
作者
Domagalski, Lukasz [1 ]
Jedrysiak, Jaroslaw [1 ]
机构
[1] Tech Univ Lodz, Dept Struct Mech, PL-90924 Lodz, Poland
关键词
Thin periodic plate; Large deflections; Tolerance modelling; THICKNESS;
D O I
10.1007/s11012-012-9546-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Thin periodic plates with large (i.e. of the order of plate thickness) deflections are considered. In this note the tolerance and the asymptotic models of these plates are presented. As an example of applications, these models are used to analyse a bending of periodic plates under various loadings.
引用
收藏
页码:1659 / 1671
页数:13
相关论文
共 21 条
[11]  
Kazmierczak M, 2010, ELECT J POL AGR U CI, V13
[12]   A NEW MODEL FOR THIN PLATES WITH RAPIDLY VARYING THICKNESS [J].
KOHN, RV ;
VOGELIUS, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1984, 20 (04) :333-350
[13]  
Lakes R. S., 1995, Chapter 1
[14]   A consistent deduction of von Karman-type theories from three-dimensional nonlinear continuum mechanics [J].
Meenen, J ;
Altenbach, H .
ACTA MECHANICA, 2001, 147 (1-4) :1-17
[15]  
Michalak B, 2001, Z ANGEW MATH MECH, V81, P639, DOI 10.1002/1521-4001(200109)81:9<639::AID-ZAMM639>3.0.CO
[16]  
2-A
[17]  
Timoshenko SP, 1959, ENG SOC MONOGRAPH
[18]   A non-asymptotic model for the stability analysis of thin biperiodic cylindrical shells [J].
Tomczyk, B. .
THIN-WALLED STRUCTURES, 2007, 45 (10-11) :941-944
[19]  
Woniak C., 2010, Mathematical Modelling and Analysis in Continuum Mechanics of Microstructured Media
[20]  
WOZNIAK C, 2001, MECH ELASTIC PLATES