Optimal Control of Time-Periodic Navier-Stokes-Voigt Equations

被引:0
作者
Anh, Cung The [1 ]
Nguyet, Tran Minh [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Thang Long Univ, Dept Math, Hanoi, Vietnam
关键词
Convergence; existence; Navier-Stokes-Voigt equations; optimality conditions; periodic optimal control; semidiscrete-in-time approximations; VELOCITY TRACKING PROBLEM; GLOBAL ATTRACTORS; FLOWS;
D O I
10.1080/01630563.2020.1786838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quadratic optimal control problem for the 3D Navier-Stokes-Voigt equations with periodic inputs. We prove the existence of optimal solutions, then establish necessary and sufficient optimality conditions. We also define semidiscrete-in-time approximations for the optimal control problem and then prove the existence of a subsequence that converges to an optimal solution.
引用
收藏
页码:1588 / 1610
页数:23
相关论文
共 50 条
[41]   EXISTENCE OF PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR 3D NAVIER-STOKES-VOIGT EQUATIONS WITH DELAY [J].
Qin, Yuming ;
Jiang, Huite .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (01) :243-264
[42]   TIME-PERIODIC STRONG SOLUTIONS OF THE 3D NAVIER-STOKES EQUATIONS WITH DAMPING [J].
Kim, Yongho ;
Li, Kwangok .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
[43]   RANDOM ATTRACTORS FOR NON-AUTONOMOUS STOCHASTIC NAVIER-STOKES-VOIGT EQUATIONS IN SOME UNBOUNDED DOMAINS [J].
Wang, Shu ;
Si, Mengmeng ;
Yang, Rong .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (07) :2169-2185
[44]   On pointwise decay rates of time-periodic solutions to the Navier-Stokes equation [J].
Nakatsuka, Tomoyuki .
MATHEMATISCHE NACHRICHTEN, 2021, 294 (01) :98-117
[45]   Nonlinear stability for convection with temperature dependent viscosity in a Navier-Stokes-Voigt fluid [J].
Straughan, Brian .
EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (05)
[46]   LONG-TIME DYNAMICS FOR A NON-AUTONOMOUS NAVIER-STOKES-VOIGT EQUATION IN LIPSCHITZ DOMAINS [J].
Yang, Xinguang ;
Feng, Baowei ;
de Souza, Thales Maier ;
Wang, Taige .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (01) :363-386
[47]   Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains [J].
Cung The Anh ;
Pham Thi Trang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (02) :223-251
[48]   On the solution of the distributed optimal control problem with time-periodic parabolic equations [J].
Salkuyeh, Davod Khojasteh ;
Pourbagher, Maeddeh .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (13) :13671-13683
[49]   Time-Periodic Solutions to the Full Navier-Stokes-Fourier System [J].
Feireisl, Eduard ;
Mucha, Piotr B. ;
Novotny, Antonin ;
Pokorny, Milan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (03) :745-786
[50]   ON THE STATISTICAL PROPERTIES OF THE 3D INCOMPRESSIBLE NAVIER-STOKES-VOIGT MODEL [J].
Levant, Boris ;
Ramos, Fabio ;
Titi, Edriss S. .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (01) :277-293