Optimal Control of Time-Periodic Navier-Stokes-Voigt Equations

被引:0
作者
Anh, Cung The [1 ]
Nguyet, Tran Minh [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Thang Long Univ, Dept Math, Hanoi, Vietnam
关键词
Convergence; existence; Navier-Stokes-Voigt equations; optimality conditions; periodic optimal control; semidiscrete-in-time approximations; VELOCITY TRACKING PROBLEM; GLOBAL ATTRACTORS; FLOWS;
D O I
10.1080/01630563.2020.1786838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quadratic optimal control problem for the 3D Navier-Stokes-Voigt equations with periodic inputs. We prove the existence of optimal solutions, then establish necessary and sufficient optimality conditions. We also define semidiscrete-in-time approximations for the optimal control problem and then prove the existence of a subsequence that converges to an optimal solution.
引用
收藏
页码:1588 / 1610
页数:23
相关论文
共 50 条
[32]   Navier-Stokes-Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity [J].
Di Plinio, Francesco ;
Giorgini, Andrea ;
Pata, Vittorino ;
Temam, Roger .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (02) :653-686
[33]   Time-periodic solutions of the compressible Navier-Stokes equations in R4 [J].
Jin, Chunhua .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01) :1-21
[34]   GROMOV-HAUSDORFF STABILITY OF GLOBAL ATTRACTORS FOR THE 3D INCOMPRESSIBLE NAVIER-STOKES-VOIGT EQUATIONS [J].
Wang, Dongze ;
Yang, Xin-guang ;
Miranville, Alain ;
Yan, Xingjie .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (11) :4646-4670
[35]   UNIFORM ATTRACTORS OF 3D NAVIER-STOKES-VOIGT EQUATIONS WITH MEMORY AND SINGULARLY OSCILLATING EXTERNAL FORCES [J].
Cung The Anh ;
Dang Thi Phuong Thanh ;
Nguyen Duong Toan .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (01) :1-23
[36]   Decay rate of solutions to 3D Navier-Stokes-Voigt equations in Hm spaces [J].
Cung The Anh ;
Pham Thi Trang .
APPLIED MATHEMATICS LETTERS, 2016, 61 :1-7
[37]   Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in R3 [J].
Zhao, Caidi ;
Zhu, Hongjin .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :183-191
[38]   ON UNIQUE SOLVABILITY OF THE TIME-PERIODIC PROBLEM FOR THE NAVIER-STOKES EQUATION [J].
Nakatsuka, Tomoyuki .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2024, 29 (9-10) :783-814
[39]   Cauchy problem for the Navier-Stokes-Voigt model governing nonhomogeneous flows [J].
Antontsev, S. N. ;
de Oliveira, H. B. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
[40]   EXISTENCE OF PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR 3D NAVIER-STOKES-VOIGT EQUATIONS WITH DELAY [J].
Qin, Yuming ;
Jiang, Huite .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (01) :243-264