Optimal Control of Time-Periodic Navier-Stokes-Voigt Equations

被引:0
作者
Anh, Cung The [1 ]
Nguyet, Tran Minh [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Thang Long Univ, Dept Math, Hanoi, Vietnam
关键词
Convergence; existence; Navier-Stokes-Voigt equations; optimality conditions; periodic optimal control; semidiscrete-in-time approximations; VELOCITY TRACKING PROBLEM; GLOBAL ATTRACTORS; FLOWS;
D O I
10.1080/01630563.2020.1786838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quadratic optimal control problem for the 3D Navier-Stokes-Voigt equations with periodic inputs. We prove the existence of optimal solutions, then establish necessary and sufficient optimality conditions. We also define semidiscrete-in-time approximations for the optimal control problem and then prove the existence of a subsequence that converges to an optimal solution.
引用
收藏
页码:1588 / 1610
页数:23
相关论文
共 36 条
[1]   Optimal control of Navier-Stokes equations with periodic inputs [J].
Barbu, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (1-2) :15-31
[2]  
Cao YP, 2006, COMMUN MATH SCI, V4, P823
[3]   Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain [J].
Celebi, A. O. ;
Kalantarov, V. K. ;
Polat, M. .
APPLICABLE ANALYSIS, 2009, 88 (03) :381-392
[4]  
Contantin P., 1988, CHICAGO LECT MATH
[5]   Time Optimal Control of the Unsteady 3D Navier-Stokes-Voigt Equations [J].
Cung The Anh ;
Tran Minh Nguyet .
APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (02) :397-426
[6]   Decay rate of solutions to 3D Navier-Stokes-Voigt equations in Hm spaces [J].
Cung The Anh ;
Pham Thi Trang .
APPLIED MATHEMATICS LETTERS, 2016, 61 :1-7
[7]   Optimal Control of the Instationary Three Dimensional Navier-Stokes-Voigt Equations [J].
Cung The Anh ;
Tran Minh Nguyet .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (04) :415-439
[8]   Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains [J].
Cung The Anh ;
Pham Thi Trang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (02) :223-251
[9]   The Navier-Stokes-Voight model for image inpainting [J].
Ebrahimi, M. A. ;
Holst, Michael ;
Lunasin, Evelyn .
IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (05) :869-894
[10]   Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations [J].
Garcia-Luengo, Julia ;
Marin-Rubio, Pedro ;
Real, Jose .
NONLINEARITY, 2012, 25 (04) :905-930