Analysis of processes in planar solid oxide fuel cells

被引:7
|
作者
Hu, Qiang [1 ]
Wang, Shaorong [1 ]
Wen, Ting-Lian [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
关键词
solid oxide fuel cell; simulation; determining step; enhancement scheme; scale-up;
D O I
10.1016/j.ssi.2008.02.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a platform for solid oxide fuel cell (SOFC) simulation has been developed and the corresponding algorithms are presented. The platform is capable of dealing with fully coupled multiphysical processes and simulating the behaviors of three flow configurations. "Border effects" were revealed and it is important to understand the scale-up topic in SOFC development. The determining steps in cell performance are proposed and respective schemes are provided to enhance cell performance according to the determining steps. The characteristics of the three flow configurations were analyzed and compared. The cross-flow configuration was given negative recommendations for its unsatisfactory performance in uniformly distributing cell temperature and current density. The co-flow configuration could intrinsically obtain a uniform current density distribution with the disadvantage of steadily increasing cell temperature from fuel inlet to outlet. The counter-flow configuration had "localized enhancement effects" near the fuel inlet and cell performance substantially benefited from these effects. But the operating conditions of the counter-flow configuration should be deliberately adjusted to avoid an excessively high cell temperature. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1579 / 1587
页数:9
相关论文
共 50 条
  • [31] Performances of planar solid oxide fuel cells with doped strontium titanate as anode materials
    Huang, Xianliang
    Zhao, Hailei
    Qiu, Weihua
    Wu, Weijiang
    Li, Xue
    ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (05) : 1678 - 1682
  • [32] Fuel flexibility of solid oxide fuel cells
    Weber, Andre
    FUEL CELLS, 2021, 21 (05) : 440 - 452
  • [33] Parametric analysis of solid oxide fuel cell
    Bo, Chong
    Yuan, Chun
    Zhao, Xiang
    Wu, Cai-Bao
    Li, Mao-Qing
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2009, 11 (04) : 391 - 399
  • [34] Residual stress analysis of cylindrical solid oxide fuel cells
    Kato, T
    Momma, A
    Nagata, S
    Kasuga, Y
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1997, 105 (12) : 1057 - 1061
  • [35] Biohythane as an energy feedstock for solid oxide fuel cells
    Veluswamy, G. K.
    Laycock, C. J.
    Shah, K.
    Ball, A. S.
    Guwy, A. J.
    Dinsdale, R. M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (51) : 27896 - 27906
  • [36] Optimization of interconnect flow channels width in a planar solid oxide fuel cell
    Li, Xiaolian
    Shi, Wangying
    Han, Minfang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (46) : 21524 - 21534
  • [37] Presentation and Performance of a Planar Solid Oxide Fuel Cell with Chaotic Gas Channels
    Wang, Ke
    An, Bo
    Li, Xingchen
    Fang, Dongyang
    Wang, Yongqing
    Su, Huijuan
    ENERGY TECHNOLOGY, 2024, 12 (01)
  • [38] Three dimensional analysis of planar solid oxide fuel cell stack considering radiation
    Tanaka, T.
    Inui, Y.
    Urata, A.
    Kanno, T.
    ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (05) : 1491 - 1498
  • [39] Thermofluid-Dynamic Analysis of Circular-Planar Type Intermediate-Temperature Solid Oxide Fuel Cells
    Campanari, Stefano
    Iora, Paolo
    Lucchini, Andrea
    Romano, Matteo
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2009, 6 (01): : 0110091 - 0110097
  • [40] Perovskites in Solid Oxide Fuel Cells
    Gazda, M.
    Jasinski, P.
    Kusz, B.
    Bochentyn, B.
    Gdula-Kasica, K.
    Lendze, T.
    Lewandowska-Iwaniak, W.
    Mielewczyk-Gryn, A.
    Molin, S.
    ENVIRONMENTAL DEGRADATION OF ENGINEERING & MATERIALS ENGINEERING AND TECHNOLOGIES, 2012, 183 : 65 - +