We illustrate, through a series of prototypical examples, that linear parity-time (PT) symmetric lattices with spatially extended gain/loss are generically unstable, for any non-zero value of the gain/loss coefficient. Our examples include a parabolic real potential with a linear imaginary part and the cases of no real and piecewise constant or linear imaginary potentials. On the other hand, this instability can be avoided and the spectrum can be real for localized or compact PT-symmetric potentials. The linear lattices are analyzed through discrete Fourier transform techniques complemented by numerical computations. Copyright (C) EPLA, 2013
机构:
Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
Washington Univ, Dept Phys, St Louis, MO 63130 USALos Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
Bender, Carl M.
;
Jones, Hugh F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, EnglandLos Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
机构:
Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
Washington Univ, Dept Phys, St Louis, MO 63130 USALos Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
Bender, Carl M.
;
Jones, Hugh F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, EnglandLos Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA