PT-symmetric lattices with spatially extended gain/loss are generically unstable

被引:17
作者
Pelinovsky, D. E. [1 ]
Kevrekidis, P. G. [2 ]
Frantzeskakis, D. J. [3 ]
机构
[1] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[3] Univ Athens Panepistimiopolis, Dept Phys, Athens 15784, Greece
基金
美国国家科学基金会;
关键词
SOLITONS;
D O I
10.1209/0295-5075/101/11002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We illustrate, through a series of prototypical examples, that linear parity-time (PT) symmetric lattices with spatially extended gain/loss are generically unstable, for any non-zero value of the gain/loss coefficient. Our examples include a parabolic real potential with a linear imaginary part and the cases of no real and piecewise constant or linear imaginary potentials. On the other hand, this instability can be avoided and the spectrum can be real for localized or compact PT-symmetric potentials. The linear lattices are analyzed through discrete Fourier transform techniques complemented by numerical computations. Copyright (C) EPLA, 2013
引用
收藏
页数:6
相关论文
共 27 条
[1]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[2]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[3]   Interactions of Hermitian and non-Hermitian Hamiltonians [J].
Bender, Carl M. ;
Jones, Hugh F. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]   Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes [J].
Bendix, Oliver ;
Fleischmann, Ragnar ;
Kottos, Tsampikos ;
Shapiro, Boris .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[6]   Asymmetric wave propagation through nonlinear PT-symmetric oligomers [J].
D'Ambroise, J. ;
Kevrekidis, P. G. ;
Lepri, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
[7]   Binary parity-time-symmetric nonlinear lattices with balanced gain and loss [J].
Dmitriev, Sergey V. ;
Sukhorukov, Andrey A. ;
Kivshar, Yuri S. .
OPTICS LETTERS, 2010, 35 (17) :2976-2978
[8]   Stabilization of solitons in PT models with supersymmetry by periodic management [J].
Driben, R. ;
Malomed, B. A. .
EPL, 2011, 96 (05)
[9]  
Eastham M.S.P., 1973, The spectral theory of periodic differential equations
[10]   Mean-Field Dynamics of a Non-Hermitian Bose-Hubbard Dimer [J].
Graefe, E. M. ;
Korsch, H. J. ;
Niederle, A. E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (15)