Exact solution of a Levy walk model for anomalous heat transport

被引:51
作者
Dhar, Abhishek [1 ]
Saito, Keiji [2 ]
Derrida, Bernard [3 ]
机构
[1] TIFR, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India
[2] Keio Univ, Dept Phys, Yokohama, Kanagawa 2238522, Japan
[3] Univ Paris Diderot, UPMC, Lab Phys Stat, Ecole Normale Super,CNRS, F-75231 Paris 05, France
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 01期
关键词
RELAXATION;
D O I
10.1103/PhysRevE.87.010103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Levy walk model is studied in the context of the anomalous heat conduction of one-dimensional systems. In this model, the heat carriers execute Levy walks instead of normal diffusion as expected in systems where Fourier's law holds. Here we calculate exactly the average heat current, the large deviation function of its fluctuations, and the temperature profile of the Levy walk model maintained in a steady state by contact with two heat baths (the open geometry). We find that the current is nonlocally connected to the temperature gradient. As observed in recent simulations of mechanical models, all the cumulants of the current fluctuations have the same system-size dependence in the open geometry. For the ring geometry, we argue that a size-dependent cutoff time is necessary for the Levy walk model to behave like mechanical models. This modification does not affect the results on transport in the open geometry for large enough system sizes. DOI: 10.1103/PhysRevE.87.010103
引用
收藏
页数:5
相关论文
共 29 条
[1]   Anomalous transport and relaxation in classical one-dimensional models [J].
Basile, G. ;
Delfini, L. ;
Lepri, S. ;
Livi, R. ;
Olla, S. ;
Politi, A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 151 (1) :85-93
[2]   Momentum conserving model with anomalous thermal conductivity in low dimensional systems [J].
Basile, Giada ;
Bernardin, Cedric ;
Olla, Stefano .
PHYSICAL REVIEW LETTERS, 2006, 96 (20)
[3]  
Bonetto F., 2000, Mathematical physics 2000, P128, DOI [10.1142/9781848160224_0008., DOI 10.1142/9781848160224_0008]
[4]   Fluctuations of the heat flux of a one-dimensional hard particle gas [J].
Brunet, E. ;
Derrida, B. ;
Gerschenfeld, A. .
EPL, 2010, 90 (02)
[5]   Average time spent by Levy flights and walks on an interval with absorbing boundaries [J].
Buldyrev, SV ;
Havlin, S ;
Kazakov, AY ;
da Luz, MGE ;
Raposo, EP ;
Stanley, HE ;
Viswanathan, GM .
PHYSICAL REVIEW E, 2001, 64 (04) :11-411081
[6]   Breakdown of Fourier's law in nanotube thermal conductors [J].
Chang, C. W. ;
Okawa, D. ;
Garcia, H. ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[7]   From anomalous energy diffusion to levy walks and heat conductivity in one-dimensional systems [J].
Cipriani, P ;
Denisov, S ;
Politi, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)
[8]   Self-consistent mode-coupling approach to one-dimensional heat transport [J].
Delfini, Luca ;
Lepri, Stefano ;
Livi, Roberto ;
Politi, Antonio .
PHYSICAL REVIEW E, 2006, 73 (06)
[9]   Dynamical heat channels [J].
Denisov, S ;
Klafter, J ;
Urbakh, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (19)
[10]   Heat transport in low-dimensional systems [J].
Dhar, Abhishek .
ADVANCES IN PHYSICS, 2008, 57 (05) :457-537