A hyper-Poisson regression model for overdispersed and underdispersed count data

被引:51
|
作者
Saez-Castillo, A. J. [1 ]
Conde-Sanchez, A. [1 ]
机构
[1] Univ Jaen, Dept Stat & Operat Res, Linares 23700, Jaen, Spain
关键词
Regression model; Count data; Hyper-Poisson; Overdispersion; Underdispersion; SERIES;
D O I
10.1016/j.csda.2012.12.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Poisson regression model is the most common framework for modeling count data, but it is constrained by its equidispersion assumption. The hyper-Poisson regression model described in this paper generalizes it and allows for over- and under-dispersion, although, unlike other models with the same property, it introduces the regressors in the equation of the mean. Additionally, regressors may also be introduced in the equation of the dispersion parameter, in such a way that it is possible to fit data that present overdispersion and underdispersion in different levels of the observations. Two applications illustrate that the model can provide more accurate fits than those provided by alternative usual models. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 157
页数:10
相关论文
共 50 条
  • [21] A New Regression Model for the Analysis of Overdispersed and Zero-Modified Count Data
    Bertoli, Wesley
    Conceicao, Katiane S.
    Andrade, Marinho G.
    Louzada, Francisco
    ENTROPY, 2021, 23 (06)
  • [22] Count Regression and Machine Learning Techniques for Zero-Inflated Overdispersed Count Data: Application to Ecological Data
    Sidumo B.
    Sonono E.
    Takaidza I.
    Annals of Data Science, 2024, 11 (03) : 803 - 817
  • [23] Extended Poisson-Tweedie: Properties and regression models for count data
    Bonat, Wagner H.
    Jorgensen, Bent
    Kokonendji, Celestin C.
    Hinde, John
    Demetrio, Clarice G. B.
    STATISTICAL MODELLING, 2018, 18 (01) : 24 - 49
  • [24] A review of the CTP distribution: a comparison with other over- and underdispersed count data models
    Jose Olmo-Jimenez, Maria
    Rodriguez-Avi, Jose
    Cueva-Lopez, Valentina
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (14) : 2684 - 2706
  • [25] Analyzing Overdispersed Antenatal Care Count Data in Bangladesh: Mixed Poisson Regression with Individual-Level Random Effects
    Hossain, Zakir
    Maria
    AUSTRIAN JOURNAL OF STATISTICS, 2021, 50 (04) : 78 - 90
  • [26] Structured additive regression for overdispersed and zero-inflated-count data
    Fahrmeir, Ludwig
    Echavarria, Leyre Osuna
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2006, 22 (04) : 351 - 369
  • [27] A regression model for overdispersed data without too many zeros
    Rodriguez-Avi, Jose
    Jose Olmo-Jimenez, Maria
    STATISTICAL PAPERS, 2017, 58 (03) : 749 - 773
  • [28] A bivariate Sarmanov regression model for count data with generalised Poisson marginals
    Hofer, Vera
    Leitner, Johannes
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (12) : 2599 - 2617
  • [29] A Poisson Regression Model For Analysis of Censored Count Data with Excess Zeroes
    Saffari, Seyed Ehsan
    Adnan, Robiah
    Greene, William
    Ahmad, Maizah Hura
    JURNAL TEKNOLOGI, 2013, 63 (02):
  • [30] Statistical process control of overdispersed count data based on one-parameter Poisson mixture models
    Jesus, Bruno D.
    Ferreira, Paulo H.
    Boaventura, Laion L.
    Fiaccone, Rosemeire L.
    Bertoli, Wesley
    Ramos, Pedro L.
    Louzada, Francisco
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (05) : 2324 - 2344