Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation

被引:36
作者
Gaudreault, Mathieu [1 ]
Drolet, Francois [1 ,2 ]
Vinals, Jorge [3 ,4 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] FPInnovat, Pointe Claire, PQ H9R 3J9, Canada
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[4] Univ Minnesota, Minnesota Supercomp Inst, Minneapolis, MN 55455 USA
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 05期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
PARAMETRICALLY EXCITED VAN; GENE; NOISE; PRINCIPLES; DESIGN;
D O I
10.1103/PhysRevE.85.056214
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We obtain the location of the Hopf bifurcation threshold for a modified van der Pol oscillator, parametrically driven by a stochastic source and including delayed feedback in both position and velocity. We introduce a multiple scale expansion near threshold, and we solve the resulting Fokker-Planck equation associated with the evolution at the slowest time scale. The analytical results are compared with a direct numerical integration of the model equation. Delay modifies the Hopf frequency at threshold and leads to a stochastic bifurcation that is shifted relative to the deterministic limit by an amount that depends on the delay time, the amplitude of the feedback terms, and the intensity of the noise. Interestingly, stochasticity generally increases the region of stability of the limit cycle.
引用
收藏
页数:7
相关论文
共 31 条
[1]  
[Anonymous], 1994, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, DOI 9780738204536
[2]  
[Anonymous], 1997, HDB STOCHASTIC METHO
[3]  
Baxendale PH, 2003, SOLID MECH APPL, V110, P125
[4]   Stochastic averaging and asymptotic behavior of the stochastic Duffing-van der Pol equation [J].
Baxendale, PH .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 113 (02) :235-272
[5]   Noise in eukaryotic gene expression [J].
Blake, WJ ;
Kærn, M ;
Cantor, CR ;
Collins, JJ .
NATURE, 2003, 422 (6932) :633-637
[6]   Delay-induced stochastic oscillations in gene regulation [J].
Bratsun, D ;
Volfson, D ;
Tsimring, LS ;
Hasty, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (41) :14593-14598
[7]   Adiabatic reduction near a bifurcation in stochastically modulated systems [J].
Drolet, F ;
Vinals, J .
PHYSICAL REVIEW E, 1998, 57 (05) :5036-5043
[8]   Stochastic gene expression in a single cell [J].
Elowitz, MB ;
Levine, AJ ;
Siggia, ED ;
Swain, PS .
SCIENCE, 2002, 297 (5584) :1183-1186
[9]   A synthetic oscillatory network of transcriptional regulators [J].
Elowitz, MB ;
Leibler, S .
NATURE, 2000, 403 (6767) :335-338
[10]   Dynamical principles of two-component genetic oscillators [J].
Guantes, Raul ;
Poyatos, Juan F. .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (03) :188-197