Zeta elements in the K-theory of Drinfeld modular varieties

被引:2
作者
Kondo, Satoshi [1 ]
Yasuda, Seidai [2 ]
机构
[1] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan
[2] Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
关键词
REPRESENTATIONS; FIELDS; VALUES;
D O I
10.1007/s00208-011-0735-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Beilinson (Contemp Math 55:1-34, 1986) constructs special elements in the second K-group of an elliptic modular curve, and shows that the image under the regulator map is related to the special values of the L-functions of elliptic modular forms. In this paper, we give an analogue of this result in the context of Drinfeld modular varieties.
引用
收藏
页码:529 / 587
页数:59
相关论文
共 29 条
  • [1] Abramenko P, 2008, GRAD TEXTS MATH, V248, P1
  • [2] [Anonymous], THESIS HARVARD U
  • [3] [Anonymous], 2004, PROGR MATH
  • [4] Beilinson A.A., 1983, P AMS IMS SIAM JOI 1, V55, P1
  • [5] Blum A., 1997, VECTOR BUNDLES CURVE, P110
  • [6] ADMISSIBLE REPRESENTATIONS OF A SEMI-SIMPLE GROUP OVER A LOCAL FIELD WITH VECTORS FIXED UNDER AN IWAHORI SUBGROUP
    BOREL, A
    [J]. INVENTIONES MATHEMATICAE, 1976, 35 : 233 - 259
  • [7] Bosch S., 1984, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V261, DOI DOI 10.1007/978-3-642-52229-1
  • [8] Bruhat F., 1972, I HAUTES ETUDES SCI, V41, P5
  • [9] Coates J., 1978, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V26, P1
  • [10] Cogdell J., 2004, FIELDS I MONOGR, V20, P1