Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning

被引:120
作者
Deng, Yue [1 ]
Bao, Feng [2 ]
Dai, Qionghai [2 ]
Wu, Lani F. [1 ]
Altschuler, Steven J. [1 ]
机构
[1] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
[2] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Dept Automat, Beijing, Peoples R China
关键词
NETWORK;
D O I
10.1038/s41592-019-0353-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in large-scale single-cell RNA-seq enable fine-grained characterization of phenotypically distinct cellular states in heterogeneous tissues. We present scScope, a scalable deep-learning-based approach that can accurately and rapidly identify cell-type composition from millions of noisy single-cell gene-expression profiles.
引用
收藏
页码:311 / +
页数:7
相关论文
共 27 条
[11]  
Kharchenko PV, 2014, NAT METHODS, V11, P740, DOI [10.1038/NMETH.2967, 10.1038/nmeth.2967]
[12]   Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis [J].
Levine, Jacob H. ;
Simonds, Erin F. ;
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad D. ;
Tadmor, Michelle D. ;
Litvin, Oren ;
Fienberg, Harris G. ;
Jager, Astraea ;
Zunder, Eli R. ;
Finck, Rachel ;
Gedman, Amanda L. ;
Radtke, Ina ;
Downing, James R. ;
Pe'er, Dana ;
Nolan, Garry P. .
CELL, 2015, 162 (01) :184-197
[13]   Deep generative modeling for single-cell transcriptomics [J].
Lopez, Romain ;
Regier, Jeffrey ;
Cole, Michael B. ;
Jordan, Michael I. ;
Yosef, Nir .
NATURE METHODS, 2018, 15 (12) :1053-+
[14]   Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets [J].
Macosko, Evan Z. ;
Basu, Anindita ;
Satija, Rahul ;
Nemesh, James ;
Shekhar, Karthik ;
Goldman, Melissa ;
Tirosh, Itay ;
Bialas, Allison R. ;
Kamitaki, Nolan ;
Martersteck, Emily M. ;
Trombetta, John J. ;
Weitz, David A. ;
Sanes, Joshua R. ;
Shalek, Alex K. ;
Regev, Aviv ;
McCarroll, Steven A. .
CELL, 2015, 161 (05) :1202-1214
[15]   ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis [J].
Pierson, Emma ;
Yau, Christopher .
GENOME BIOLOGY, 2015, 16
[17]   A general and flexible method for signal extraction from single-cell RNA-seq data [J].
Risso, Davide ;
Perraudeau, Fanny ;
Gribkova, Svetlana ;
Dudoit, Sandrine ;
Vert, Jean-Philippe .
NATURE COMMUNICATIONS, 2018, 9
[18]   Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding [J].
Rosenberg, Alexander B. ;
Roco, Charles M. ;
Muscat, Richard A. ;
Kuchina, Anna ;
Sample, Paul ;
Yao, Zizhen ;
Graybuck, Lucas T. ;
Peeler, David J. ;
Mukherjee, Sumit ;
Chen, Wei ;
Pun, Suzie H. ;
Sellers, Drew L. ;
Tasic, Bosiljka ;
Seelig, Georg .
SCIENCE, 2018, 360 (6385) :176-+
[19]   Single-cell RNA-seq: advances and future challenges [J].
Saliba, Antoine-Emmanuel ;
Westermann, Alexander J. ;
Gorski, Stanislaw A. ;
Vogel, Joerg .
NUCLEIC ACIDS RESEARCH, 2014, 42 (14) :8845-8860
[20]   Single-cell RNA-seq reveals dynamic paracrine control of cellular variation [J].
Shalek, Alex K. ;
Satija, Rahul ;
Shuga, Joe ;
Trombetta, John J. ;
Gennert, Dave ;
Lu, Diana ;
Chen, Peilin ;
Gertner, Rona S. ;
Gaublomme, Jellert T. ;
Yosef, Nir ;
Schwartz, Schraga ;
Fowler, Brian ;
Weaver, Suzanne ;
Wang, Jing ;
Wang, Xiaohui ;
Ding, Ruihua ;
Raychowdhury, Raktima ;
Friedman, Nir ;
Hacohen, Nir ;
Park, Hongkun ;
May, Andrew P. ;
Regev, Aviv .
NATURE, 2014, 510 (7505) :363-+