Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning

被引:114
作者
Deng, Yue [1 ]
Bao, Feng [2 ]
Dai, Qionghai [2 ]
Wu, Lani F. [1 ]
Altschuler, Steven J. [1 ]
机构
[1] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
[2] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Dept Automat, Beijing, Peoples R China
关键词
NETWORK;
D O I
10.1038/s41592-019-0353-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in large-scale single-cell RNA-seq enable fine-grained characterization of phenotypically distinct cellular states in heterogeneous tissues. We present scScope, a scalable deep-learning-based approach that can accurately and rapidly identify cell-type composition from millions of noisy single-cell gene-expression profiles.
引用
收藏
页码:311 / +
页数:7
相关论文
共 27 条
  • [11] Kharchenko PV, 2014, NAT METHODS, V11, P740, DOI [10.1038/NMETH.2967, 10.1038/nmeth.2967]
  • [12] Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis
    Levine, Jacob H.
    Simonds, Erin F.
    Bendall, Sean C.
    Davis, Kara L.
    Amir, El-ad D.
    Tadmor, Michelle D.
    Litvin, Oren
    Fienberg, Harris G.
    Jager, Astraea
    Zunder, Eli R.
    Finck, Rachel
    Gedman, Amanda L.
    Radtke, Ina
    Downing, James R.
    Pe'er, Dana
    Nolan, Garry P.
    [J]. CELL, 2015, 162 (01) : 184 - 197
  • [13] Deep generative modeling for single-cell transcriptomics
    Lopez, Romain
    Regier, Jeffrey
    Cole, Michael B.
    Jordan, Michael I.
    Yosef, Nir
    [J]. NATURE METHODS, 2018, 15 (12) : 1053 - +
  • [14] Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets
    Macosko, Evan Z.
    Basu, Anindita
    Satija, Rahul
    Nemesh, James
    Shekhar, Karthik
    Goldman, Melissa
    Tirosh, Itay
    Bialas, Allison R.
    Kamitaki, Nolan
    Martersteck, Emily M.
    Trombetta, John J.
    Weitz, David A.
    Sanes, Joshua R.
    Shalek, Alex K.
    Regev, Aviv
    McCarroll, Steven A.
    [J]. CELL, 2015, 161 (05) : 1202 - 1214
  • [15] ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
    Pierson, Emma
    Yau, Christopher
    [J]. GENOME BIOLOGY, 2015, 16
  • [17] A general and flexible method for signal extraction from single-cell RNA-seq data
    Risso, Davide
    Perraudeau, Fanny
    Gribkova, Svetlana
    Dudoit, Sandrine
    Vert, Jean-Philippe
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [18] Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
    Rosenberg, Alexander B.
    Roco, Charles M.
    Muscat, Richard A.
    Kuchina, Anna
    Sample, Paul
    Yao, Zizhen
    Graybuck, Lucas T.
    Peeler, David J.
    Mukherjee, Sumit
    Chen, Wei
    Pun, Suzie H.
    Sellers, Drew L.
    Tasic, Bosiljka
    Seelig, Georg
    [J]. SCIENCE, 2018, 360 (6385) : 176 - +
  • [19] Single-cell RNA-seq: advances and future challenges
    Saliba, Antoine-Emmanuel
    Westermann, Alexander J.
    Gorski, Stanislaw A.
    Vogel, Joerg
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 8845 - 8860
  • [20] Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    Shalek, Alex K.
    Satija, Rahul
    Shuga, Joe
    Trombetta, John J.
    Gennert, Dave
    Lu, Diana
    Chen, Peilin
    Gertner, Rona S.
    Gaublomme, Jellert T.
    Yosef, Nir
    Schwartz, Schraga
    Fowler, Brian
    Weaver, Suzanne
    Wang, Jing
    Wang, Xiaohui
    Ding, Ruihua
    Raychowdhury, Raktima
    Friedman, Nir
    Hacohen, Nir
    Park, Hongkun
    May, Andrew P.
    Regev, Aviv
    [J]. NATURE, 2014, 510 (7505) : 363 - +