Seismic Signal Denoising using U-Net in the Time-Frequency Domain

被引:4
作者
Chirtu, Mihail-Antonio [1 ]
Radoi, Anamaria [1 ]
机构
[1] Univ Politehn Bucuresti, Res Ctr Adv Res New Mat Prod & Innovat Proc, Bucharest, Romania
来源
2022 45TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING, TSP | 2022年
关键词
convolutional neural networks; signal denoising; seismic signal; time-frequency analysis; Short-Time Fourier Transform; TRANSFORM;
D O I
10.1109/TSP55681.2022.9851325
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Signal denoising is one of the main routines comprised in the seismic data processing chain in order to improve the signal-to-noise ratio (SNR) of registered signals. In this paper, we propose a new method for seismic signal denoising based on a U-Net convolutional neural network architecture. The model is able to learn a decomposition of the noisy seismic signal into the denoised version of the signal and noise. This decomposition is performed in the time-frequency domain, by learning masks to extract both the denoised seismic signal and the corresponding noise. In order to prove the effectiveness of the proposed approach, we use a publicly available dataset, namely the Stanford Earthquake Dataset (STEAD).
引用
收藏
页码:6 / 10
页数:5
相关论文
共 26 条
  • [1] Casas L, 2021, EUR SIGNAL PR CONF, P1467, DOI 10.23919/Eusipco47968.2020.9287738
  • [2] Atomic decomposition by basis pursuit
    Chen, SSB
    Donoho, DL
    Saunders, MA
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) : 33 - 61
  • [3] Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method
    Chen, Yangkang
    Zhang, Dong
    Jin, Zhaoyu
    Chen, Xiaohong
    Zu, Shaohuan
    Huang, Weilin
    Gan, Shuwei
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (03) : 1695 - 1717
  • [4] Image denoising by sparse 3-D transform-domain collaborative filtering
    Dabov, Kostadin
    Foi, Alessandro
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) : 2080 - 2095
  • [5] The contourlet transform: An efficient directional multiresolution image representation
    Do, MN
    Vetterli, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (12) : 2091 - 2106
  • [6] IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE
    DONOHO, DL
    JOHNSTONE, IM
    [J]. BIOMETRIKA, 1994, 81 (03) : 425 - 455
  • [7] Adapting to unknown smoothness via wavelet shrinkage
    Donoho, DL
    Johnstone, IM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) : 1200 - 1224
  • [8] Seislet transform and seislet frame
    Fomel, Sergey
    Liu, Yang
    [J]. GEOPHYSICS, 2010, 75 (03) : V25 - V38
  • [9] The detection of low magnitude seismic events using array-based waveform correlation
    Gibbons, Steven J.
    Ringdal, Frode
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 165 (01) : 149 - 166
  • [10] SIGNAL ESTIMATION FROM MODIFIED SHORT-TIME FOURIER-TRANSFORM
    GRIFFIN, DW
    LIM, JS
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1984, 32 (02): : 236 - 243