Discrete Libraries of Amphiphilic Poly(ethylene glycol) Graft Copolymers: Synthesis, Assembly, and Bioactivity

被引:28
|
作者
Chen, Junfeng [1 ,2 ]
Rizvi, Aoon [3 ]
Patterson, Joseph P. [3 ]
Hawker, Craig J. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[3] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
CLICK CHEMISTRY; PEG ANTIBODIES; NANOPARTICLES; DELIVERY; GROWTH; METHACRYLATE; SELECTIVITY; PEGYLATION; OLIGOMERS; VERSATILE;
D O I
10.1021/jacs.2c07859
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Poly(ethylene glycol) (PEG) is an important and widely used polymer in biological and pharmaceutical applications for minimizing nonspecific binding while improving blood circulation for therapeutic/imaging agents. However, commercial PEG samples are polydisperse, which hampers detailed studies on chain length-dependent properties and potentially increases antibody responses in pharmaceutical applications. Here, we report a practical and scalable method to prepare libraries of discrete PEG analogues with a branched, nonlinear structure. These lipid-PEG derivatives have a monodisperse backbone with side chains containing a discrete number of ethylene glycol units (3 or 4) and unique functionalizable chain ends. Significantly, the branched, nonlinear structure is shown to allow for efficient nanoparticle assembly while reducing anti-PEG antibody recognition when compared to commercial polydisperse linear systems, such as DMG-PEG2000. By enabling the scalable synthesis of a broad library of graft copolymers, fundamental self-assembly properties can be understood and shown to directly correlate with the total number of PEG units, nature of the chain ends, and overall backbone length. These results illustrate the advantages of discrete macromolecules when compared to traditional disperse materials.
引用
收藏
页码:19466 / 19474
页数:9
相关论文
共 50 条
  • [21] Calixarene-Centered Amphiphilic A2B2 Miktoarm Star Copolymers Based on Poly(ε-caprolactone) and Poly(ethylene glycol) Synthesis and Self-Assembly Behaviors in Water
    Gou, Peng Fei
    Zhu, Wei Pu
    Shen, Zhi Quan
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2010, 48 (24) : 5643 - 5651
  • [22] Amphiphilic photocleavable block copolymers based on monomethyl poly(ethylene glycol) and poly(4-substituted-ε-caprolactone): synthesis, characterization, and cellular uptake
    Peng, Kang-Yu
    Wang, Shiu-Wei
    Hua, Mu-Yi
    Lee, Ren-Shen
    RSC ADVANCES, 2013, 3 (40) : 18453 - 18463
  • [23] Lipase-catalyzed synthesis of oxidation-responsive poly(ethylene glycol)-b-poly(β-thioether ester) amphiphilic block copolymers
    Wu, Wan-Xia
    Yang, Xian-Ling
    Liu, Bei-Yu
    Deng, Qing-Feng
    Xun, Miao-Miao
    Wang, Na
    Yu, Xiao-Qi
    RSC ADVANCES, 2016, 6 (14): : 11870 - 11879
  • [24] Synthesis and characterization of poly(-caprolactone-co-ethylene glycol) star-type amphiphilic copolymers by "click" chemistry and ring-opening polymerization
    Ozturk, Temel
    Kiliclioglu, Ali
    Savas, Bedrettin
    Hazer, Baki
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2018, 55 (08): : 588 - 594
  • [25] Synthesis and self-assembly of water-soluble polythiophene-graft-poly(ethylene oxide) copolymers
    Mohamed, Mohamed Gamal
    Cheng, Chih-Chia
    Lin, Yung-Chih
    Huang, Cheng-Wei
    Lu, Fang-Hsien
    Chang, Feng-Chih
    Kuo, Shiao-Wei
    RSC ADVANCES, 2014, 4 (42): : 21830 - 21839
  • [26] SYNTHESIS OF CHITOSAN-GRAFT-POLY(ETHYLENE GLYCOL) METHYL ETHER ACRYLATE COPOLYMERS AND THEIR APPLICATION FOR PREPARATION OF MAGNETIC PARTICLES
    Gerasimcik, Irina
    Budriene, Saulute
    Romaskevic, Tatjana
    POLYMER CHEMISTRY AND TECHNOLOGY, 2009, : 104 - 109
  • [27] Blood compatibility evaluations of poly(ethylene glycol)-poly(lactic acid) copolymers
    Li, Chenghua
    Ma, Chengyan
    Zhang, Yi
    Liu, Zonghua
    Xue, Wei
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2016, 30 (10) : 1485 - 1493
  • [28] Synthesis, Self-Association, and Solubilizing Ability of an Amphiphilic Derivative of Poly(ethylene glycol) Methyl Ether
    Pashirova, T. N.
    Burilova, E. A.
    Lukashenko, S. S.
    Lenina, O. A.
    Zobov, V. V.
    Khamatgalimov, A. R.
    Kovalenko, V. I.
    Zakharova, L. Ya
    Sinyashin, O. G.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2017, 87 (12) : 2832 - 2837
  • [29] Amphiphilic poly(ethylene glycol)-poly(ε-ecaprolactone) AB2 miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity
    Yoon, Kwonhyeok
    Kang, Han Chang
    Li, Li
    Cho, Hana
    Park, Mi-Kyoung
    Lee, Eunji
    Bae, You Han
    Huh, Kang Moo
    POLYMER CHEMISTRY, 2015, 6 (04) : 531 - 542
  • [30] Mixed micelles from methoxy poly(ethylene glycol)-polylactide and methoxy poly(ethylene glycol)-poly(sebacic anhydride) copolymers as drug carriers
    Lai, Po-Liang
    Hsu, Cheng-Chun
    Liu, Tsang-Hao
    Hong, Ding-Wei
    Chen, Lih-Huei
    Chen, Wen-Jer
    Chu, I-Ming
    REACTIVE & FUNCTIONAL POLYMERS, 2012, 72 (11) : 846 - 855