Wavelet basis of cubic splines on the hypercube satisfying homogeneous boundary conditions

被引:11
作者
Cerna, Dana [1 ]
Finek, Vaclav [1 ]
机构
[1] Tech Univ Liberec, Dept Math & Didact Math, Liberec 46117, Czech Republic
关键词
Construction; wavelet; cubic spline; homogeneous Dirichlet boundary conditions; condition number; elliptic problem; Galerkin method; conjugate gradient method; 4TH-ORDER PROBLEMS; SHORT SUPPORT; INTERVAL;
D O I
10.1142/S0219691315500149
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a construction of a new cubic spline-wavelet basis on the hypercube satisfying homogeneous Dirichlet boundary conditions. Wavelets have two vanishing moments. Stiffness matrices arising from discretization of elliptic problems using a constructed wavelet basis have uniformly bounded condition numbers and we show that these condition numbers are small. We present quantitative properties of the constructed basis and we provide a numerical example to show the efficiency of the Galerkin method using the constructed basis.
引用
收藏
页数:21
相关论文
共 23 条
  • [1] Local decomposition of refinable spaces and wavelets
    Carnicer, JM
    Dahmen, W
    Pena, JM
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (02) : 127 - 153
  • [2] Quadratic Spline Wavelets with Short Support for Fourth-Order Problems
    Cerna, Dana
    Finek, Vaclav
    [J]. RESULTS IN MATHEMATICS, 2014, 66 (3-4) : 525 - 540
  • [3] Cubic spline wavelets with short support for fourth-order problems
    Cerna, Dana
    Finek, Vaclav
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 44 - 56
  • [4] Cubic spline wavelets with complementary boundary conditions
    Cerna, Dana
    Finek, Vaclav
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1853 - 1865
  • [5] Construction of optimally conditioned cubic spline wavelets on the interval
    Cerna, Dana
    Finek, Vaclav
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (02) : 219 - 252
  • [6] CHUI CK, 1992, NUMERICAL METHODS AP, V9, P53, DOI DOI 10.1007/978-3-0348-8619-2_
  • [7] Cohen A, 2001, MATH COMPUT, V70, P27, DOI 10.1090/S0025-5718-00-01252-7
  • [8] Adaptive wavelet methods II - Beyond the elliptic case
    Cohen, A
    Dahmen, W
    DeVore, R
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2002, 2 (03) : 203 - 245
  • [9] Biorthogonal spline wavelets on the interval - Stability and moment conditions
    Dahmen, W
    Kunoth, A
    Urban, K
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (02) : 132 - 196
  • [10] MULTILEVEL PRECONDITIONING
    DAHMEN, W
    KUNOTH, A
    [J]. NUMERISCHE MATHEMATIK, 1992, 63 (03) : 315 - 344