Spectral conformal parameterization

被引:110
作者
Mullen, Patrick [1 ]
Tong, Yiying [2 ]
Alliez, Pierre [3 ]
Desbrun, Mathieu [1 ]
机构
[1] Caltech, Pasadena, CA 91125 USA
[2] Michigan State Univ, E Lansing, MI 48824 USA
[3] INRIA Sophia Antipolis, Sophia Antipolis, France
基金
美国国家科学基金会;
关键词
D O I
10.1111/j.1467-8659.2008.01289.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a spectral approach to automatically and efficiently obtain discrete free-boundary conformal parameterizations of triangle mesh patches, without the common artifacts due to positional constraints on vertices and without undue bias introduced by sampling irregularity High-quality parameterizations are computed through a constrained minimization of a discrete weighted conformal energy by finding the largest eigenvalue/eigenvector of a generalized eigenvalue problem involving sparse, symmetric matrices. We demonstrate that this novel and robust approach improves on previous linear techniques both quantitatively and qualitatively.
引用
收藏
页码:1487 / 1494
页数:8
相关论文
共 45 条
[1]  
Alliez P., 2007, S GEOM PROC, P39
[2]  
[Anonymous], 2000, Tech. rep.
[3]  
[Anonymous], ACM INT C P SER
[4]  
[Anonymous], 2002, P 13 EUR WORKSH REND
[5]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[6]  
Ben-Chen Mirela, 2008, COMPUTER GRAPHICS FO, V27
[7]   Intrinsic parameterizations of surface meshes [J].
Desbrun, M ;
Meyer, M ;
Alliez, P .
COMPUTER GRAPHICS FORUM, 2002, 21 (03) :209-+
[8]  
DESBRUN M, 2005, ACM SIGGRAPH COURSE
[9]  
Eck M., 1995, Computer Graphics Proceedings. SIGGRAPH 95, P173, DOI 10.1145/218380.218440
[10]  
FIEDLER M, 1973, CZECH MATH J, V23, P298