Gauge theories in noncommutative geometry

被引:5
|
作者
Masson, Thierry [1 ]
机构
[1] Univ Sud Toulon Var, Aix Marseille Univ, Ctr Phys Theor, CNRS,UMR 6207, F-13288 Marseille 9, France
来源
FRONTIERS OF FUNDAMENTAL PHYSICS | 2012年 / 1446卷
关键词
noncommutative geometry; gauge field theories; DIFFERENTIAL GEOMETRY; STANDARD MODEL; DERIVATIONS; CONNECTIONS; GRAVITY; FIELDS;
D O I
10.1063/1.4727990
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this review we present some of the fundamental mathematical structures which permit to define noncommutative gauge field theories. In particular, we emphasize the theory of noncommutative connections, with the notions of curvatures and gauge transformations. Two different approaches to noncommutative geometry are covered: the one based on derivations and the one based on spectral triples. Examples of noncommutative gauge field theories are given to illustrate the constructions and to display some of the common features.
引用
收藏
页码:73 / 98
页数:26
相关论文
共 50 条
  • [31] Derivation-based noncommutative field theories on AF algebras
    Masson, T.
    Nieuviarts, G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (13)
  • [32] Carnot-Caratheodory metric and gauge fluctuation in noncommutative geometry
    Martinetti, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) : 585 - 616
  • [33] Dimensionally reduced Yang-Mills theories in noncommutative geometry
    Kalkkinen, J
    PHYSICS LETTERS B, 1997, 399 (3-4) : 243 - 249
  • [34] Supersymmetric QCD from noncommutative geometry
    van den Broek, Thijs
    van Suijlekom, Walter D.
    PHYSICS LETTERS B, 2011, 699 (1-2) : 119 - 122
  • [35] Noncommutative gauge and gravity theories and geometric Seiberg-Witten map
    Aschieri, Paolo
    Castellani, Leonardo
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (23-24) : 3733 - 3746
  • [36] Wilsonian effective actions and the IR/UV mixing in noncommutative gauge theories
    Khoze, VV
    Travaglini, G
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (01):
  • [37] Matrix models of noncommutative 3D lattice gauge theories
    Bazzocchi, F
    Cirafici, M
    Maccaferri, C
    Profumo, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (25): : 4287 - 4299
  • [38] Gauge Theories on Deformed Spaces
    Blaschke, Daniel N.
    Kronberger, Erwin
    Sedmik, Rene I. P.
    Wohlgenannt, Michael
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [39] The Geometry of Noncommutative Spacetimes
    Eckstein, Michal
    UNIVERSE, 2017, 3 (01)
  • [40] Carnot-Carathéodory Metric and Gauge Fluctuation in Noncommutative Geometry
    Pierre Martinetti
    Communications in Mathematical Physics, 2006, 265 : 585 - 616