Atomic model of the type III secretion system needle

被引:270
|
作者
Loquet, Antoine [1 ]
Sgourakis, Nikolaos G. [2 ]
Gupta, Rashmi [3 ]
Giller, Karin [1 ]
Riedel, Dietmar [4 ]
Goosmann, Christian
Griesinger, Christian [1 ,5 ]
Kolbe, Michael [3 ]
Baker, David [2 ]
Becker, Stefan [1 ]
Lange, Adam [1 ]
机构
[1] Max Planck Inst Biophys Chem, Dept NMR Based Struct Biol, D-37077 Gottingen, Germany
[2] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[3] Max Planck Inst Infect Biol, Dept Cellular Microbiol, D-10117 Berlin, Germany
[4] Max Planck Inst Biophys Chem, Lab Electron Microscopy, D-37077 Gottingen, Germany
[5] Max Planck Inst Infect Biol, D-10117 Berlin, Germany
基金
美国国家卫生研究院;
关键词
SOLID-STATE NMR; SUPRAMOLECULAR STRUCTURE; ELECTRON CRYOMICROSCOPY; CROSS-POLARIZATION; MICROSCOPY; PROTEINS; CRYSTALLOGRAPHY; RESOLUTION; MACHINES; DELIVERY;
D O I
10.1038/nature11079
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pathogenic bacteria using a type III secretion system (T3SS)(1,2) to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells(3-6). Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies(7-12), resulting in low-resolution and medium-resolution models(13-17). However, such approaches cannot deliver atomic details, especially of the crucial subunit-subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be alpha-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.
引用
收藏
页码:276 / +
页数:6
相关论文
共 50 条
  • [31] The Extreme C Terminus of Shigella flexneri IpaB Is Required for Regulation of Type III Secretion, Needle Tip Composition, and Binding
    Roehrich, A. Dorothea
    Martinez-Argudo, Isabel
    Johnson, Steven
    Blocker, Ariel J.
    Veenendaal, Andreas K. J.
    INFECTION AND IMMUNITY, 2010, 78 (04) : 1682 - 1691
  • [32] Pseudomonas aeruginosa injects NDK into host cells through a type III secretion system
    Neeld, Dennis
    Jin, Yongxin
    Bichsel, Candace
    Jia, Jinghua
    Guo, Jianhui
    Bai, Fang
    Wu, Weihui
    Ha, Un-Hwan
    Terada, Naohiro
    Jin, Shouguang
    MICROBIOLOGY-SGM, 2014, 160 : 1417 - 1426
  • [33] Effective Cancer Vaccine Platform Based on Attenuated Salmonella and a Type III Secretion System
    Xu, Xin
    Hegazy, Wael A. H.
    Guo, Linjie
    Gao, Xiuhua
    Courtney, Amy N.
    Kurbanov, Suhrab
    Liu, Daofeng
    Tian, Gengwen
    Manuel, Edwin R.
    Diamond, Don J.
    Hensel, Michael
    Metelitsa, Leonid S.
    CANCER RESEARCH, 2014, 74 (21) : 6260 - 6270
  • [34] A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system
    Spreter, Thomas
    Yip, Calvin K.
    Sanowar, Sarah
    Andre, Ingemar
    Kimbrough, Tyler G.
    Vuckovic, Marija
    Pfuetzner, Richard A.
    Deng, Wanyin
    Yu, Angel C.
    Finlay, B. Brett
    Baker, David
    Miller, Samuel I.
    Strynadka, Natalie C. J.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (05) : 468 - 476
  • [35] Structural Analysis of a Specialized Type III Secretion System Peptidoglycan-cleaving Enzyme
    Burkinshaw, Brianne J.
    Deng, Wanyin
    Lameignere, Emilie
    Wasney, Gregory A.
    Zhu, Haizhong
    Worrall, Liam J.
    Finlay, B. Brett
    Strynadka, Natalie C. J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (16) : 10406 - 10417
  • [36] RNase E Promotes Expression of Type III Secretion System Genes in Pseudomonas aeruginosa
    Sharp, Josh S.
    Rietsch, Arne
    Dove, Simon L.
    JOURNAL OF BACTERIOLOGY, 2019, 201 (22)
  • [37] Construction and evaluation of type III secretion system mutants of the catfish pathogen Edwardsiella piscicida
    Edrees, A.
    Abdelhamed, H.
    Nho, S. W.
    Park, S. B.
    Karsi, A.
    Austin, F. W.
    Essa, M.
    Pechan, T.
    Lawrence, M. L.
    JOURNAL OF FISH DISEASES, 2018, 41 (05) : 805 - 816
  • [38] EseG, an Effector of the Type III Secretion System of Edwardsiella tarda, Triggers Microtubule Destabilization
    Xie, Hai Xia
    Yu, Hong Bing
    Zheng, Jun
    Nie, Pin
    Foster, Leonard J.
    Mok, Yu-Keung
    Finlay, B. Brett
    Leung, Ka Yin
    INFECTION AND IMMUNITY, 2010, 78 (12) : 5011 - 5021
  • [39] Timing is everything: the regulation of type III secretion
    Deane, Janet E.
    Abrusci, Patrizia
    Johnson, Steven
    Lea, Susan M.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2010, 67 (07) : 1065 - 1075
  • [40] Targeting Type III Secretion in Yersinia pestis
    Pan, Ning J.
    Brady, Michael J.
    Leong, John M.
    Goguen, Jon D.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2009, 53 (02) : 385 - 392