Epigenetic Mechanisms of Plant Adaptation to Biotic and Abiotic Stresses

被引:142
作者
Ashapkin, Vasily V. [1 ]
Kutueva, Lyudmila I. [1 ]
Aleksandrushkina, Nadezhda I. [1 ]
Vanyushin, Boris F. [1 ]
机构
[1] Lomonosov Moscow State Univ, Belozersky Inst Physicochem Biol, Moscow 119234, Russia
关键词
plant epigenetics; epigenetic variability; abiotic stress; biotic stress; environmental adaptation; gene expression; DNA methylation; chromatin; siRNA; INDUCED CHROMATIN CHANGES; DIRECTED DNA METHYLATION; PARASITIC PLANT; TRANSCRIPTIONAL MEMORY; IRON HOMEOSTASIS; GENE-EXPRESSION; RNA; RESPONSES; PATHWAY; CUSCUTA;
D O I
10.3390/ijms21207457
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Unlike animals, plants are immobile and could not actively escape the effects of aggressive environmental factors, such as pathogenic microorganisms, insect pests, parasitic plants, extreme temperatures, drought, and many others. To counteract these unfavorable encounters, plants have evolved very high phenotypic plasticity. In a rapidly changing environment, adaptive phenotypic changes often occur in time frames that are too short for the natural selection of adaptive mutations. Probably, some kind of epigenetic variability underlines environmental adaptation in these cases. Indeed, isogenic plants often have quite variable phenotypes in different habitats. There are examples of successful "invasions" of relatively small and genetically homogenous plant populations into entirely new habitats. The unique capability of quick environmental adaptation appears to be due to a high tendency to transmit epigenetic changes between plant generations. Multiple studies show that epigenetic memory serves as a mechanism of plant adaptation to a rapidly changing environment and, in particular, to aggressive biotic and abiotic stresses. In wild nature, this mechanism underlies, to a very significant extent, plant capability to live in different habitats and endure drastic environmental changes. In agriculture, a deep understanding of this mechanism could serve to elaborate more effective and safe approaches to plant protection.
引用
收藏
页码:1 / 32
页数:33
相关论文
共 113 条
[1]   Natural variation of DNA methylation and gene expression may determine local adaptations of Scots pine populations [J].
Alakarppa, Emmi ;
Salo, Heikki M. ;
Valledor, Luis ;
Jesus Canal, Maria ;
Haggman, Hely ;
Vuosku, Jaana .
JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (21) :5293-5305
[2]   Interspecific RNA Interference of SHOOT MERISTEMLESS-Like Disrupts Cuscuta pentagona Plant Parasitism [J].
Alakonya, Amos ;
Kumar, Ravi ;
Koenig, Daniel ;
Kimura, Seisuke ;
Townsley, Brad ;
Runo, Steven ;
Garces, Helena M. ;
Kang, Julie ;
Yanez, Andrea ;
David-Schwartz, Rakefet ;
Machuka, Jesse ;
Sinha, Neelima .
PLANT CELL, 2012, 24 (07) :3153-3166
[3]   Epigenetic variability in plants: Heritability, adaptability, evolutionary significance [J].
Ashapkin, V. V. ;
Kutueva, L. I. ;
Vanyushin, B. F. .
RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2016, 63 (02) :181-192
[4]   Defence-related priming and responses to recurring drought: Two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways [J].
Avramova, Zoya .
PLANT CELL AND ENVIRONMENT, 2019, 42 (03) :983-997
[5]   Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes [J].
Avramova, Zoya .
PLANT JOURNAL, 2015, 83 (01) :149-159
[6]   Regulated AtHKT1 Gene Expression by a Distal Enhancer Element and DNA Methylation in the Promoter Plays an Important Role in Salt Tolerance [J].
Baek, Dongwon ;
Jiang, Jiafu ;
Chung, Jung-Sung ;
Wang, Bangshing ;
Chen, Junping ;
Xin, Zhanguo ;
Shi, Huazhong .
PLANT AND CELL PHYSIOLOGY, 2011, 52 (01) :149-161
[7]   Genome-Wide Association of Histone H3 Lysine Nine Methylation with CHG DNA Methylation in Arabidopsis thaliana [J].
Bernatavichute, Yana V. ;
Zhang, Xiaoyu ;
Cokus, Shawn ;
Pellegrini, Matteo ;
Jacobsen, Steven E. .
PLOS ONE, 2008, 3 (09)
[8]   Histone modifications in transcriptional activation during plant development [J].
Berr, Alexandre ;
Shafiq, Sarfraz ;
Shen, Wen-Hui .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2011, 1809 (10) :567-576
[9]   Genome instability and epigenetic modification - heritable responses to environmental stress? [J].
Boyko, Alex ;
Kovalchuk, Igor .
CURRENT OPINION IN PLANT BIOLOGY, 2011, 14 (03) :260-266
[10]   Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing [J].
Cao, XF ;
Jacobsen, SE .
CURRENT BIOLOGY, 2002, 12 (13) :1138-1144