Epigenetic Mechanisms of Plant Adaptation to Biotic and Abiotic Stresses

被引:127
|
作者
Ashapkin, Vasily V. [1 ]
Kutueva, Lyudmila I. [1 ]
Aleksandrushkina, Nadezhda I. [1 ]
Vanyushin, Boris F. [1 ]
机构
[1] Lomonosov Moscow State Univ, Belozersky Inst Physicochem Biol, Moscow 119234, Russia
关键词
plant epigenetics; epigenetic variability; abiotic stress; biotic stress; environmental adaptation; gene expression; DNA methylation; chromatin; siRNA; INDUCED CHROMATIN CHANGES; DIRECTED DNA METHYLATION; PARASITIC PLANT; TRANSCRIPTIONAL MEMORY; IRON HOMEOSTASIS; GENE-EXPRESSION; RNA; RESPONSES; PATHWAY; CUSCUTA;
D O I
10.3390/ijms21207457
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Unlike animals, plants are immobile and could not actively escape the effects of aggressive environmental factors, such as pathogenic microorganisms, insect pests, parasitic plants, extreme temperatures, drought, and many others. To counteract these unfavorable encounters, plants have evolved very high phenotypic plasticity. In a rapidly changing environment, adaptive phenotypic changes often occur in time frames that are too short for the natural selection of adaptive mutations. Probably, some kind of epigenetic variability underlines environmental adaptation in these cases. Indeed, isogenic plants often have quite variable phenotypes in different habitats. There are examples of successful "invasions" of relatively small and genetically homogenous plant populations into entirely new habitats. The unique capability of quick environmental adaptation appears to be due to a high tendency to transmit epigenetic changes between plant generations. Multiple studies show that epigenetic memory serves as a mechanism of plant adaptation to a rapidly changing environment and, in particular, to aggressive biotic and abiotic stresses. In wild nature, this mechanism underlies, to a very significant extent, plant capability to live in different habitats and endure drastic environmental changes. In agriculture, a deep understanding of this mechanism could serve to elaborate more effective and safe approaches to plant protection.
引用
收藏
页码:1 / 32
页数:33
相关论文
共 50 条
  • [1] Impact of polyploidy on plant tolerance to abiotic and biotic stresses
    Tossi, Vanesa E.
    Martinez Tosar, Leandro J.
    Laino, Leandro E.
    Iannicelli, Jesica
    Regalado, Jose Javier
    Escandon, Alejandro Salvio
    Baroli, Irene
    Causin, Humberto Fabio
    Pitta-Alvarez, Sandra Irene
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [2] Seaweed extracts: enhancing plant resilience to biotic and abiotic stresses
    Kumar, Gagan
    Nanda, Satyabrata
    Singh, Sushil Kumar
    Kumar, Sanjeet
    Singh, Divya
    Singh, Bansh Narayan
    Mukherjee, Arpan
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [3] Elongator and its epigenetic role in plant development and responses to abiotic and biotic stresses
    Ding, Yezhang
    Mou, Zhonglin
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [4] Epigenetic Signals on Plant Adaptation: a Biotic Stress Perspective
    Costa Ferreira Neto, Jose Ribamar
    da Silva, Manasses Daniel
    Pandolfi, Valesca
    Crovella, Sergio
    Benko-Iseppon, Ana Maria
    Kido, Ederson Akio
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2017, 18 (04) : 352 - 367
  • [5] Epigenetic regulation in plant abiotic stress responses
    Chang, Ya-Nan
    Zhu, Chen
    Jiang, Jing
    Zhang, Huiming
    Zhu, Jian-Kang
    Duan, Cheng-Guo
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2020, 62 (05) : 563 - 580
  • [6] Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses
    ul Haq, Saeed
    Khan, Abid
    Ali, Muhammad
    Khattak, Abdul Mateen
    Gai, Wen-Xian
    Zhang, Huai-Xia
    Wei, Ai-Min
    Gong, Zhen-Hui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (21)
  • [7] Analytical Methods for Detection of Plant Metabolomes Changes in Response to Biotic and Abiotic Stresses
    Piasecka, Anna
    Kachlicki, Piotr
    Stobiecki, Maciej
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (02):
  • [8] Epigenetic mechanisms of plant stress responses and adaptation
    Sahu, Pranav Pankaj
    Pandey, Garima
    Sharma, Namisha
    Puranik, Swati
    Muthamilarasan, Mehanathan
    Prasad, Manoj
    PLANT CELL REPORTS, 2013, 32 (08) : 1151 - 1159
  • [9] Tomato mitogen-activated protein kinase: mechanisms of adaptation in response to biotic and abiotic stresses
    Shi, Yumei
    Zhang, Zhifang
    Yan, Zhenghao
    Chu, Honglong
    Luo, Changxin
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [10] Cytokinin action in response to abiotic and biotic stresses in plants
    Cortleven, Anne
    Leuendorf, Jan Erik
    Frank, Manuel
    Pezzetta, Daniela
    Bolt, Sylvia
    Schmuelling, Thomas
    PLANT CELL AND ENVIRONMENT, 2019, 42 (03) : 998 - 1018