A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation

被引:32
作者
Yapman, Omer [1 ]
Amiraliyev, Gabil M. [1 ]
机构
[1] Erzincan Binali Yildirim Univ, Fac Arts & Sci, Dept Math, TR-24100 Erzincan, Turkey
关键词
Volterra integro-differential equation; singular perturbation; finite difference; uniform convergence; DIFFERENCE SCHEME;
D O I
10.1080/00207160.2019.1614565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the second-order accurate homogeneous (non-hybrid) type difference scheme for solving a singularly perturbed first-order Volterra integro-differential equation. It is shown that the method displays uniform convergence of on a special non-uniform mesh, where N is the mesh parameter. Numerical results are included to verify the theoretical estimates.
引用
收藏
页码:1293 / 1302
页数:10
相关论文
共 50 条
  • [41] A fitted operator numerical method for singularly perturbed Fredholm integro-differential equation with integral initial condition
    Aklilu Fufa Oljira
    Mesfin Mekuria Woldaregay
    [J]. BMC Research Notes, 17
  • [42] UNIFORM CONVERGENCE RESULTS FOR SINGULARLY PERTURBED FREDHOLM INTEGRO-DIFFERENTIAL EQUATION
    Amiraliyev, Gabil M.
    Durmaz, Muhammet Enes
    Kudu, Mustafa
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 9 (06): : 55 - 64
  • [43] A finite-difference method for a singularly perturbed delay integro-differential equation
    Kudu, Mustafa
    Amirali, Ilhame
    Amiraliyev, Gabil M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 308 : 379 - 390
  • [44] Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method
    Durmaz, Muhammet Enes
    Cakir, Musa
    Amirali, Ilhame
    Amiraliyev, Gabil M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
  • [45] A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh
    Cakir, Musa
    Gunes, Baransel
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (03): : 787 - 799
  • [46] ABSTRACT LINEAR VOLTERRA SECOND-ORDER INTEGRO-DIFFERENTIAL EQUATIONS
    Zakora, D. A.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2016, 7 (02): : 75 - 91
  • [47] A Monotone Second-Order Numerical Method for Fredholm Integro-Differential Equation
    Amirali, Ilhame
    Durmaz, Muhammet Enes
    Amiraliyev, Gabil M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (07)
  • [48] Fourth order scheme of exponential type for singularly perturbed volterra integro-differential equations
    Salama, AA
    Evans, DJ
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 77 (01) : 153 - 164
  • [49] A Comparative Study on the Numerical Solution for Singularly Perturbed Volterra Integro-Differential Equations
    Panda A.
    Mohapatra J.
    Reddy N.R.
    [J]. Computational Mathematics and Modeling, 2021, 32 (3) : 364 - 375
  • [50] A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel
    Liu, Li-Bin
    Ye, Limin
    Bao, Xiaobing
    Zhang, Yong
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2024, 19 (02) : 740 - 752